催化学报 ›› 2019, Vol. 40 ›› Issue (3): 289-319.DOI: 10.1016/S1872-2067(19)63293-6

• 综述 • 上一篇    下一篇

g-C3N4界面改性:掺杂金属硫化物构建新型异质结光催化剂的能源转换展望

任亦杰a, 曾德乾b, Wee-Jun Onga,c   

  1. a 厦门大学马来西亚分校能源与化学工程学院, 雪兰莪 43900, 马来西亚;
    b 广西大学资源环境与材料学院, 广西南宁 530004, 中国;
    c 厦门大学化学化工学院, 福建厦门 361005, 中国
  • 收稿日期:2018-11-18 修回日期:2018-12-28 出版日期:2019-03-18 发布日期:2019-02-22
  • 通讯作者: Wee-Jun Ong, 曾德乾
  • 基金资助:

    厦门大学的启动资助(XMUMRF/2019-C3/IENG/0013);马来西亚国家石油公司,埃克森美孚公司和壳牌公司赞助独立奖.

Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review

Yijie Rena, Deqian Zengb, Wee-Jun Onga,c   

  1. a School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia;
    b School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China;
    c College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2018-11-18 Revised:2018-12-28 Online:2019-03-18 Published:2019-02-22

摘要:

光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物的特性,因而成为最具吸引力和前景的技术之一,被广泛应用于解决环境和能源问题.但是目前,太阳能燃料的最高转化效率为5%,无法满足商业化要求(≥ 10%).各种光催化材料被探索研究以进一步提高光催化效率.但目前广泛使用的材料都有不同的缺点.比如最常用的金属氧化物(TiO2)由于禁带较宽,仅能利用太阳光中的紫外光,限制了其对光的使用效率;贵金属化合物虽性能优异但成本较高,不宜规模化应用;硫化物或非金属单质一般容易发生光腐蚀,稳定性较差;非金属化合物或聚合物中光生电子和空穴复合率高,活性较低.最近几年,类石墨相氮化碳(g-C3N4)以其优异的热稳定性以及化学稳定性,能带结构易调控和前驱体价格低廉等特点而成为目前研究的热点,在光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域受到广泛的应用.然而,传统热缩聚法合成的g-C3N4光催化剂比表面积小、电荷复合率高、禁带宽度稍微大、光生载流子传输慢,抑制了其光催化活性.为了进一步提高g-C3N4的光催化活性,出现了多种改性方法.纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质,更能促进光生电子和空穴快速转移,提供更多的光生电子或使光生电子具有更强的还原性而成为研究的热点.从2009年以来,基于g-C3N4的异质结结构以其优异的光催化性能吸引了世界各国科学家的关注.本文综述了过渡金属硫化物(TMS)/g-C3N4纳米复合材料的最近研究进展,包括:(1)纯g-C3N4的制备,(2)g-C3N4的改性方法,(3)TMS/g-C3N4异质结光催化剂的设计原则,以及(4)能量转换方面的应用.并从以下几个方面对金属硫化物异质结体系的特性和转移机理进行了介绍:(1)I-型异质结,(2)Ⅱ-型异质结,(3)p-n型异质结,(4)肖特基异质结和(5)Z-型异质结.此外,还系统地介绍了g-C3N4基异质结光催化剂在光解水、CO2还原、固氮和污染物降解等方面的应用.最后,本文分析了目前g-C3N4光催化剂异质结领域面临的问题和挑战,展望了未来的发展趋势.

关键词: 类石墨相氮化碳, 金属硫化物, 光催化, 能源转换, 光解水, 还原二氧化碳, 污染物降解, 固氮

Abstract:

As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4, (2) modification strategies of g-C3N4, (3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction, (2) Type Ⅱ heterojunction, (3) p-n heterojunction, (4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.

Key words: Graphitic carbon nitride, Metal sulfide, Photocatalysis, Energy transformation, Water splitting, Reduction of carbon dioxide, Pollutant degradation, Nitrogen fixation