催化学报 ›› 2020, Vol. 41 ›› Issue (6): 985-997.DOI: 10.1016/S1872-2067(19)63462-5

• 论文 • 上一篇    下一篇

铈基模型催化剂的纳米结构:有序CeO2(111)薄膜上的Pt-Co纳米颗粒

Yaroslava Lykhacha, Tomás Skálab, Armin Neitzela, Nataliya Tsudb, Klára Beranováb, Kevin C. Princec, Vladimír Matolínb, Jörg Libudaa   

  1. a 弗里德里希-亚历山大埃尔朗根-纽伦堡大学, 埃尔朗根催化资源中心界面研究与催化, 91058埃尔朗根, 德国;
    b 查尔斯大学数学与物理学院表面与等离子体科学系, 18000布拉格, 捷克共和国;
    c Elettra-Sincrotrone Trieste SCpA, StradaStatale 14, km 16
    3. 5, 34149巴索维扎-的里雅斯特, 意大利
  • 收稿日期:2019-07-03 修回日期:2019-08-12 出版日期:2020-06-18 发布日期:2020-01-21
  • 通讯作者: Yaroslava Lykhach

Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films

Yaroslava Lykhacha, Tomás Skálab, Armin Neitzela, Nataliya Tsudb, Klára Beranováb, Kevin C. Princec, Vladimír Matolínb, Jörg Libudaa   

  1. a Interface Research and Catalysis, Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany;
    b Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovickách 2, 18000 Prague, Czech Republic;
    c Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 16
    3. 5, 34149 Basovizza-Trieste, Italy
  • Received:2019-07-03 Revised:2019-08-12 Online:2020-06-18 Published:2020-01-21
  • Contact: S1872-2067(19)63462-5

摘要: 制备并表征了原子分散的模型体系:氧化铈负载的Pt-Co核壳催化剂.采用超高真空物理气相沉积法制备了有序CeO2(111)膜上的Pt@Co和Co@Pt核壳纳米结构,并用同步辐射光电子能谱和共振光发射光谱对其进行了研究.在低Co覆盖率(0.5ML)下Co在CeO2(111)上沉积生成Co-CeO2(111)固溶体,然后在更高Co覆盖率下生长为金属Co纳米粒子.Pt@Co和Co@Pt两种模型结构在300-500K温度范围内都能稳定地抗烧结.在500K退火后,Pt@Co纳米结构含有接近纯的钴壳,而Co@Pt中的铂壳部分被金属钴覆盖.在550K以上,在Pt@Co和Co@Pt纳米结构中近表面区域的重新排序中产生了次表层的Pt Co合金和富铂外壳.对于Co@Pt纳米粒子,近表面区域的化学有序性取决于沉积铂壳的初始厚度.无论初始铂壳的厚度如何,在有氧存在下对Co@Pt纳米结构进行退火,都会导致Pt-Co合金的分解以及Co的氧化.Co的逐步氧化与吸附质诱导的Co偏析共同导致在负载的Co@Pt纳米结构表面形成厚的CoO层.这一过程伴随着CeO2(111)薄膜的裂解,以及在550 K以上氧气中退火后CeO2包裹氧化的Co@Pt纳米结构.很明显,于不同温度下在氧气和氢气的氧化-还原循环过程中,无论铂的初始厚度是多少,负载的Co@Pt纳米颗粒的结构和化学成分的变化主要是由氧化所致,而还原处理的影响则很小.

关键词: 核壳纳米粒子, 模型催化剂, Pt-Co, 氧化铈, 化学有序性, 同步辐射光电子能谱

Abstract: We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields Co-CeO2(111) solid solution at low Co coverage (0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.

Key words: Core-shell nanoparticles, Model catalyst, Pt-Co, Cerium oxide, Chemical ordering, Synchrotron radiation photoelectron, spectroscopy