催化学报 ›› 2021, Vol. 42 ›› Issue (12): 2122-2140.DOI: 10.1016/S1872-2067(21)63806-8
收稿日期:2021-02-15
接受日期:2021-02-15
出版日期:2021-12-18
发布日期:2021-05-20
通讯作者:
吴自力
作者简介:第一联系人:†共同第一作者.
Xiang Wang†, Meijun Li†, Zili Wu*(
)
Received:2021-02-15
Accepted:2021-02-15
Online:2021-12-18
Published:2021-05-20
Contact:
Zili Wu
About author:* E-mail: wuz1@ornl.gov†The authors contributed equally to this work.
摘要:
二氧化铈作为催化剂、催化剂载体和助剂被广泛应用于各类氧化还原的催化反应中, 是多相催化领域中至关重要的金属氧化物. 氧化铈因具有丰富的缺陷结构、较强的氧化还原能力以及异常的酸碱功能等独特性质, 在催化领域中非常重要. 在分子层面上理解氧化铈的储氧能力、氧化还原效应和酸碱性质对建立催化构效关系尤为重要, 是有效合理地改善和设计铈基催化材料的关键. 在诸多的表征手段中, 光谱在氧化铈结构和表面性质的研究中显示出无可争议的优势, 可以提供原子和分子层面的化学信息. 本文总结了各种光谱方法(包括光学、X射线、中子、电子和核磁谱学)对氧化铈表面性质表征的研究进展. 分析了直接光谱表征及其与探针分子耦合两种方法在氧化铈表征中的应用; 归纳了预处理条件、氧化铈纳米粒子的形貌和尺寸对其表面位点的性质、强度和密度的影响. 最后展望了如何利用反应条件下的原位光谱来更好地理解和揭示铈基材料的催化作用机制的可能性.
王翔, 李美俊, 吴自力. 二氧化铈催化剂的氧化还原和酸碱性质的原位光谱表征[J]. 催化学报, 2021, 42(12): 2122-2140.
Xiang Wang, Meijun Li, Zili Wu. In situ spectroscopic insights into the redox and acid-base properties of ceria catalysts[J]. Chinese Journal of Catalysis, 2021, 42(12): 2122-2140.
Fig. 1. Raman spectra of ceria with different particle sizes, showing 464 cm-1 peak shift to lower energy and its asymmetric broadening with decreasing particle size. Adapted with permission from Ref. [32]. Copyright 2002 AIP Publishing.
Fig. 2. UV-Vis absorption spectrum (a) and UV and visible Raman spectra (b) of a ceria sample annealed at 1000 °C for 5 h. Adapted with permission from Ref. [40]. Copyright 2009 American Chemical Society.
Fig. 3. (a) A typical XAS spectrum at the Ce LIII edge for a powder sample of CeO2; (b) The expanded XANES range of the absorption spectrum of CeO2; (c) The Fourier transform magnitude of the data (black curve) and theoretical fit (dotted red curve) for the first coordination shell of cerium of the CeO2 EXAFS data. Adapted from Ref. [20]. Copyright 2020 Royal Chemical Society.
Fig. 4. Evolution with temperature of the concentration fraction of Ce3+ present within the sample during exposure to hydrogen. Results were obtained from linear combination fitting performed on the time-resolved XAS measurements. Ce3+ concentration fraction during the heating and cooling phases plotted in black and red, respectively. Reprinted from Ref. [61]. Copyright 2019 American Chemical Society.
Fig. 5. IR spectra in the OH region for a ceria sample treated three times under H2 (13 kPa) for 0.5 h at 573 (a), 623 (b), 673 (c) and 773 K (d). Reprinted with permission from Ref. [68]. Copyright 1996 Royal Society of Chemistry.
Fig. 6. Infrared reflection absorption spectra of 1 ML CO adsorption on oxidized and reduced single crystal ceria(110) and (111) surfaces at around 80 K. Reprinted with permission from Ref. [78]. Copyright 2017 John Wiley and Sons.
Fig. 7. (a) Deconvolution of the Ce 3d core level XPS spectrum (923.1-876.0 eV of ~18 L) after subtracting the Shirley background where the green lines correspond to the Gaussian-Lorentzian peaks; (b) change in the intensity ratio of Ce3+/Ce4+ with increasing the exposure of atomic hydrogen, where the line is for eye-guide only. Adapted with permission from Ref. [89]. Copyright 2014 Elsevier B.V.
Fig. 8. INS spectra of CeO2 collected at 10 K after H2-treated at 533 K (a), 623 K (b), 673 K (c), 393 K (d) vacuum after (c); (e) exposure to O2 at RT and then 393 K vacuum after (d). All spectra are difference spectra using the spectrum of CeO2 after 673 K O2-treatment as background. Adapted from Ref. [63]. Copyright 2017 American Chemical Society.
Scheme 1. Schematic description of H2 interaction with CeO2 with the formation of surface OH and Ce-H. Adapted from Ref. [63]. Copyright 2017 American Chemical Society.
Fig. 9. (a) Raman spectra of O2 adsorption on oxidized CeO2. The CeO2 pellet was heated under 10% O2 in He flow from 93 to 673 K at a rate of 5 K min-1, and the spectra were collected at each of the specified temperatures. Adapted with permission from Ref. [102]. Copyright 2006 John Wiley and Sons; (b) Raman spectra from O2 adsorption at different temperatures on 673 K reduced ceria rods, cubes and octahedra. Adapted from Ref. [38]. Copyright 2010 American Chemical Society.
Fig. 10. IR spectra of adsorbed dioxygen on CeO2 at 298 K after admission of 16O2 (18O2) for 1 min (a), and pre-reduced CeO2-x (673 K in H2) at 210 K (b); (c) pre-reduced CeO2-x (673 K in H2) in presence of 16O2 at elevated temperature from 200 to 473K with a heating rate of 2.5 K/min. Adapted from Ref. [106]. Copyright 1989 American Chemical Society.
Fig. 11. (a) 17O NMR (14.1 T) spectra of 17O enriched CeO2 nanoparticles mixed with the TEKPol radical in TCE, with and without microwave irradiation, using a presaturated Hahn echo experiment. The spectra were recorded at 95 K. The OFF spectrum was recorded at 12.5 kHz MAS, whereas the ON spectrum was recorded at 10 kHz in order to separate the spinning sidebands from the signal arising from the first layer. Spinning sidebands are labelled according to the layer of the signal from which they arise. (b) The indirect DNP 17O NMR (14.1 T) spectra of 17O enriched CeO2 nanoparticles impregnated with TEKPol in TCE, recorded at 12.5 kHz MAS with a recycle delay of 4.3 s, 320 scans and variable contact times for the 1H-17O cross polarisation. The 17O magnetisation was pre-saturated to avoid the direct DNP signal. Adapted from with permission Ref. [112]. Copyright 2017 Royal Society of Chemistry.
Fig. 12. EPR spectra of CeO2 sample (recorded after 30 min at 77 K) under increasing PO2. Reprinted with permission from Ref. [115]. Copyright 2013 Springer Publishing.
Fig. 13. IR spectra from pyridine adsorbed on ceria nanoshapes that were calcined at 673 K. Spectra were obtained after pyridine adsorption at room temperature followed by desorption at 423 K. Reprinted from Ref. [137]. Copyright 2015 American Chemical Society.
Fig. 15. Proposed assignment of IR bands to different (hydrogen)carbonate species on ceria. Ce (yellow), O (red), C (dark gray), H (white). (a) hydrogen carbonate; (b) monodentate carbonate; (C) bidentate-type carbonate; and (d) tridentate carbonate. Adapted from Ref. [162]. Copyright 2011 American Chemical Society.
Fig. 16. IR spectra from CHCl3 adsorbed at room temperature on dehydrated ceria with three different morphologies. Adapted from Ref. [137]. Copyright 2011 American Chemical Society.
|
| [1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
| [2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
| [3] | 石靖, 郭煜华, 谢飞, 章名田, 张洪涛. 氧化还原活性配体的电子效应对钌催化水氧化反应的影响[J]. 催化学报, 2023, 52(9): 271-279. |
| [4] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
| [5] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
| [6] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
| [7] | 孙嘉辰, 陈赛, 付东龙, 王伟, 王显辉, 孙国栋, 裴春雷, 赵志坚, 巩金龙. 氧扩散与表面反应在VOx-Ce1‒xZrxO2催化丙烷脱氢反应中的影响[J]. 催化学报, 2023, 52(9): 217-227. |
| [8] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
| [9] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
| [10] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
| [11] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
| [12] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
| [13] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
| [14] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
| [15] | 刘鑫, 王茂弟, 任亦起, 刘嘉立, 戴慧聪, 杨启华. 构建模块化催化体系用于氢转移反应: 氢键的促进作用[J]. 催化学报, 2023, 52(9): 207-216. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||