催化学报 ›› 2020, Vol. 41 ›› Issue (1): 103-113.DOI: 10.1016/S1872-2067(19)63479-0

• 光催化产氢 • 上一篇    下一篇

MoS2@ZnxCd1-xS增强可见光诱导产氢性能同时降解抗生素废水:固溶体策略助力光催化

韦之栋a,b, 徐美奇a,b, 刘军营a,b, 郭伟琦a,b, 江治a,b, 上官文峰a,b   

  1. a 上海交通大学燃烧与环境技术中心, 上海 200240;
    b 上海交通大学氢科学中心, 上海 200240
  • 收稿日期:2019-06-25 修回日期:2019-07-24 出版日期:2020-01-18 发布日期:2019-10-22
  • 通讯作者: 上官文峰
  • 基金资助:
    国家自然科学基金(21773153);国家重点基础研究发展计划(2018YFB1502001);上海交通大学氢科学中心经费.

Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis

Zhidong Weia,b, Meiqi Xua,b, Junying Liua,b, Weiqi Guoa,b, Zhi Jianga,b, Wenfeng Shangguana,b   

  1. a Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China;
    b Center of Hydrogen Science, Shanghai Jiao Tong University, NO. 800, Dongchuan Road, Shanghai 200240, China
  • Received:2019-06-25 Revised:2019-07-24 Online:2020-01-18 Published:2019-10-22
  • Supported by:
    We thank the National Natural Science Foundation of China (21773153) and the National Key Basic Research and Development Program (2018YFB1502001) for the financial support as well as the Funding support from Centre of Hydrogen Science, Shanghai Jiao Tong University, China.

摘要: 随着工业化进程的加快,能源的需求亦随之增长.以传统不可再生的化石燃料为主体的能源结构,虽然可以满足日常能源需求,但是使用后其排放的氮氧化物,硫氧化物以及CO2温室气体将会对人类的环境造成污染.因此,开发清洁可持续的新型能源成为重要的研究方向之一.氢能作为一种可持续能源,具有高热值、零排放等优点,而光催化粉末体系制氢则具有低成本,低污染等优势.因此,光催化制氢有望成为未来氢能重要的生产方式之一.然而,由于目前关于光催化制氢的研究大多集中于牺牲剂体系,例如醇类及醇胺类体系.传统牺牲剂体系作为探索光催化制氢的作用机制是很有效的,但是具体到未来工业化进程中,其经济性还需进一步的提高,且其中甲醇、乙醇等本身也可作为一种燃料使用.因此,开发廉价的牺牲剂体系,也成了未来工业化进程中的一个重要方面.本文选用MoS2@ZnxCd1-xS作为催化剂,以抗生素废水作为牺牲剂,在可见光照射下实现产氢的同时,降解阿莫西林抗生素废水,相比于单独的MoS2@ZnS及MoS2@CdS体系,性能明显的提高.通过扫描电镜与元素分布测试证明了各个元素的存在及分布.XRD结果表明,MoS2@ZnxCd1-xS是以固溶体形式存在,并非简单地物理混合.随后HRTEM进一步证实所形成的固溶体催化剂呈六方晶相.采用XPS和Raman分析了元素的化学环境,发现固溶体与MoS2可能是通过Mo-S-Cd/Zn键而结合;而MoS2表现出1-T与2-H的混相结构.材料的吸光性能通过紫外可见漫反射测试.我们发现,随着ZnS含量的不断增加,固溶体在可见光区域的吸收不断减弱,同时吸收带边向着紫外光区移动.而光催化制氢性能测试实验表明,Zn0.5Cd0.5S体系呈现出最佳的性能,这可能是因为当Cd:Zn=1:1时,固溶体策略对于CdS在热力学与动力学方面的提升均达到最佳.而MoS2量的增加,产氢效果也呈现出“火山峰”似的规律,过多的MoS2将会吸收主要的入射光,从而使Zn0.5Cd0.5S不能被有效地激发进而参与到反应中去.液相色谱-质谱联用技术表明阿莫西林的降解不仅仅是由于吸附所致,光催化也存在一定的贡献.而反应前后的XRD与XPS结果则表明了催化剂结构稳定.

关键词: 光催化, 氢能, 抗生素废水, 降解, 协同

Abstract: In this study, a ZnxCd1-xS solid solution was successfully synthesized using a hydrothermal method. MoS2 serving as a co-catalyst for hydrogen evolution was also prepared through a one-pot hydrothermal method. The structures, morphology, chemical states, and optical properties were characterized using powder X-ray diffraction, scanning electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflection spectroscopy. Visible-light-driven photocatalytic experiments were conducted to simultaneously achieve hydrogen production and amoxicillin antibiotic wastewater degradation. The results indicated 8%MoS2/ZnxCd1-xS achieves the best photocatalytic performance. The ZnxCd1-xS samples illustrated a superior performance to that of CdS, which can be attributed to a thermodynamic improvement. Based on the results of PL and TRPL analyses, the enhancement of the hydrogen production mechanisms can be ascribed to the prolonged separation process of the photocarriers. Furthermore, the degradation results were analyzed using the HPLC method and the possible degradation pathways were determined through the HPLC-MS techniques.

Key words: Photocatalytic, Hydrogen energy, Antibiotic wastewater, Degradation, Simultaneous