催化学报 ›› 2020, Vol. 41 ›› Issue (8): 1230-1239.DOI: 10.1016/S1872-2067(20)63531-8

• 论文 • 上一篇    下一篇

氮磷共掺杂石墨烯量子点/Bi5O7I复合材料的构筑及增强的光催化降解性能

李凯a, 季梦夏a, 陈蓉b, 姜琪b, 夏杰祥a, 李华明a   

  1. a 江苏大学化学化工学院, 能源研究院, 江苏镇江 212013;
    b 江苏大学环境安全与工程学院, 江苏镇江 212013
  • 收稿日期:2019-11-02 修回日期:2019-12-18 出版日期:2020-08-18 发布日期:2020-08-08
  • 通讯作者: 夏杰祥
  • 基金资助:
    国家自然科学基金(21676128和21576123);江苏大学科研经费(11JDG0146);江苏省研究生科研与实践创新计划项目(KYCX17_1791).

Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance

Kai Lia, Mengxia Jia, Rong Chenb, Qi Jiangb, Jiexiang Xiaa, Huaming Lia   

  1. a School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
    b School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2019-11-02 Revised:2019-12-18 Online:2020-08-18 Published:2020-08-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21676128 and 21576123), Jiangsu University Scientific Research Funding (11JDG0146), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1791).

摘要: 碘氧铋(BiOI)半导体光催化剂具有独特的层状结构与宽的光吸收范围,在光催化降解污染物方面表现出较好的催化活性.然而,较窄的带隙加快了光生电子空穴对的复合,大大限制了BiOI光催化剂的发展应用.研究表明,通过富铋策略调控卤氧铋材料中的卤素含量,可以实现对其能带结构的可控调控.本文通过构筑氮磷共掺杂石墨烯量子点/Bi5O7I(NPG/Bi5O7I)复合光催化材料,不仅提高了Bi5O7I材料对可见光的吸收能力,同时增大了光生电子空穴对的分离效率,显著提升了NPG/Bi5O7I复合材料的光催化降解性能.
本实验通过简单的离子液体辅助溶剂热方法合成了NPG/Bi5O7I复合光催化材料.采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨率透射电子显微镜(HR-TEM)等表征手段证明已经成功地制备了NPG/Bi5O7I复合材料.同时,以盐酸四环素(TC)和恩诺沙星(ENR)为目标污染物探究了所制备NPG/Bi5O7I材料的光催化活性.实验结果表明,在相同的实验条件下,相对于Bi5O7I纳米棒,NPG/Bi5O7I复合材料具有更高的光催化活性.光照120min后,相比于Bi5O7I单体材料,NPG/Bi5O7I复合材料对TC的去除率提高了54.4%,ENR的去除率则提高了约54.9%.紫外可见漫反射(DRS)、稳态荧光(FL)、光电流和阻抗(EIS)结果表明,NPG的引入能够显著拓宽Bi5O7I材料的光吸收范围,提高材料光生载流子的分离效率,抑制其重组,大大提升材料的光催化降解活性.电子顺磁共振(ESR)、X射线光电子能谱分析(XPS)和自由基捕获实验结果进一步验证了NPG/Bi5O7I复合材料光催化性能提高的可能机制.当可见光照射时,Bi5O7I价带上的电子被激发跃迁至导带并在价带留下空穴;跃迁至导带的光生电子则迅速从Bi5O7I转移到NPG,从而有效地抑制了光生电子空穴对的重组.随着光照时间的延长,聚集在NPG上的电子将O2还原为·O2-,产生的·O2-进一步将有机污染物降解为小分子无机物.与此同时,Bi5O7I价带上的空穴具有极强的氧化能力,可以直接将目标污染物矿化降解.

关键词: Bi5O7I, 氮磷共掺杂石墨烯量子点, 光催化, 离子液体, 电荷分离

Abstract: Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7I (NPG/Bi5O7I) nanorods were fabricated via a simple solvothermal method. The morphology, structure, and optical properties of the as-prepared samples were investigated by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and diffused reflectance spectroscopy. The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation. The photodegradation activity of Bi5O7I improved after its surface was modified with NPGs, which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency. From the electron spin resonance spectra, XPS valence band data, and free radical trapping experiment results, the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals. A possible photocatalytic degradation mechanism for NPG/Bi5O7I nanorods was proposed.

Key words: Bi5O7I, N,P co-doped graphene quantum dots, Photocatalysis, Ionic liquid, Charge separation