催化学报 ›› 2020, Vol. 41 ›› Issue (10): 1663-1673.DOI: 10.1016/S1872-2067(20)63537-9

• 论文 • 上一篇    下一篇

组成可调的ZnS1-xSex纳米带固溶体的构筑与高效太阳燃料制备

李盼a,b, Sajjad Hussaina,b, 李璐a, 郭令举a, 贺涛a,b   

  1. a 国家纳米科学中心, 中国科学院纳米科学卓越创新中心, 中国科学院纳米系统和多级次制造重点实验室, 北京 100190;
    b 中国科学院大学, 北京 100049
  • 收稿日期:2020-02-24 修回日期:2020-03-28 出版日期:2020-10-18 发布日期:2020-08-15
  • 通讯作者: 贺涛
  • 基金资助:
    中国科学院国际伙伴计划(一带一路)项目;国家自然科学基金(21972029).

Composition-tunable ZnS1-xSex nanobelt solid solutions for efficient solar-fuel production

Pan Lia,b, Sajjad Hussaina,b, Lu Lia, Lingju Guoa, Tao Hea,b   

  1. a CAS Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-02-24 Revised:2020-03-28 Online:2020-10-18 Published:2020-08-15
  • Supported by:
    This work was supported by the Belt and Road Initiative by Chinese Academy of Sciences and the National Natural Science Foundation of China (21972029).

摘要: 在光能作用下,利用半导体催化剂将CO2和H2O转化为太阳燃料(H2和CO),有望同时减少碳排放和获取高附加值的替代能源与化工产品,因而成为研究热点之一.半导体光催化剂具有较宽的光谱响应范围和合适的导价带位置(即光生电子/空穴应具有适宜的还原/氧化能力),这是其作为高效催化剂的前提条件之一.但是,当调控半导体的禁带宽带以使其有利于捕获太阳能时,通常也会同时改变其导价带位置,从而影响光生电子/空穴的还原/氧化能力,降低反应驱动力,进而可能导致光催化活性降低.根据能带工程理论,构筑固溶体是一种有效地改变该窘境的方法.它主要是通过调控固溶体组成,进而调控其能带结构,即不仅能够调控半导体材料的光谱响应范围(调控禁带宽带),还能调控半导体的导价带位置(调控光生电子/空穴的还原/氧化能力),从而实现反应光捕获与驱动力之间的最佳平衡,达到提高半导体催化剂光催化性能的目的.
ZnS具有较好的光催化性能,但其禁带宽度较高,不利于对可见光的吸收.考虑到ZnS和ZnSe都具有六方纤锌矿结构,且S和Se的电负性和二价负离子半径相近,因此,本文以ZnS1-xSex(en)0.5为前驱体,通过简便易行的热处理法,成功制备了具有不同组成的ZnS1-xSex纳米带固溶体.结果发现,通过改变反应物中的Se/S摩尔比可调控所得固溶体的组成,进而调控其能级排列(禁带宽度与导价带位置等),第一性原理计算进一步证实了该实验结果.当Se/S的摩尔比从0增加到1时,所得固溶体的禁带宽度在3.69~2.68eV之间连续可调;同时,导带底不断向下移动,而价带顶持续向上移动,即光生电子/空穴的还原/氧化能力不断降低.利用所得样品进行光催化还原制备太阳燃料实验,发现ZnS0.75Se0.25表现出最高的光催化活性.这主要是因为在该固溶体中实现了光捕获(禁带宽带)与反应驱动力(光生电子/空穴的还原/氧化能力)的最佳平衡.因此,本文有助于更好地设计与制备基于固溶体的高效光催化剂,从而为将来的实际应用奠定理论与实验基础.

关键词: ZnS1-xSex, 固溶体, 能带工程, 光捕获, 载流子行为, 太阳燃料

Abstract: Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be well achieved by continuously tuning the band structure. Here the ZnS1-xSex nanobelt solid solutions have been prepared via thermal treatment of ZnS1-xSex(en)0.5 precursors. The compositions are adjusted by changing the mole ratio of Se to S powder in the starting materials, resulting in continuously modulating the alignment of energy levels of the obtained solid solutions. The band structure is also studied via theoretical calculation. Accordingly, the light harvesting can be tuned too, as confirmed by the UV-vis absorption spectra. XPS valence spectra are used to determine the valence band maximum. Transient photoluminescence spectra are employed to study the separation of photogenerated charge carriers. BET specific surface area and CO2 adsorption isotherms of different catalysts are measured. The obtained ZnS1-xSex nanobelts exhibit different photocatalytic activity for solar-fuel production, dependent on many factors like the light harvesting and alignment of energy levels. The related mechanism is studied in detail.

Key words: ZnS1-xSex, Solid solution, Band engineering, Light harvesting, Charge behavior, Solar fuels