催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1216-1229.DOI: 10.1016/S1872-2067(21)63985-2
陈方帅a, 吴崇备a, 郑耿锋c(), 曲良体b(
), 韩庆a(
)
收稿日期:
2021-10-01
接受日期:
2021-11-24
出版日期:
2022-05-18
发布日期:
2022-03-23
通讯作者:
郑耿锋,曲良体,韩庆
基金资助:
Fangshuai Chena, Chongbei Wua, Gengfeng Zhengc(), Liangti Qub(
), Qing Hana(
)
Received:
2021-10-01
Accepted:
2021-11-24
Online:
2022-05-18
Published:
2022-03-23
Contact:
Gengfeng Zheng, Liangti Qu, Qing Han
Supported by:
摘要:
将太阳能直接转化为燃料和高附加值化学品是存储可再生能源非常有前景的策略. 少层氮化碳材料因其比表面积大、电荷传输距离短、活性位点暴露多等优点, 在合成太阳燃料和高附加值化学品方面展示出巨大潜力, 而成为光催化领域的研究热点.
本文总结了近年来少层氮化碳基光催化剂的合成、结构调控及其在合成太阳燃料和高附加值化学品领域的研究成果. 首先简要介绍了用于少层氮化碳材料的合成方法, 包括剥离、热氧化刻蚀、真空冷冻干燥、分子自组装、球磨以及化学气相沉积技术, 并讨论了不同方法的优缺点. 其次, 深入分析了少层氮化碳的化学改性(杂原子掺杂、缺陷工程、异质结构)、微结构调控(零维量子点、一维纳米带、二维纳米网片、三维纳米组装体)对其电子结构、光学性质、电荷分离和迁移的影响. 针对不同的改性策略, 分别从光催化反应三个过程(光的捕集、光生电荷分离和迁移及表面催化反应)讨论其对于少层氮化碳基材光催化活性的促进作用以及存在的不足, 涉及的反应包括光催化分解水、CO2还原、氮气还原合成氨、光合成过氧化氢和光催化有机小分子合成. 最后, 从光催化剂设计、光催化反应体系、反应机理和反应器四个方面讨论了少层氮化碳基光催化剂在合成太阳燃料和高附加值化学品领域面临的挑战和发展前景.
对于催化剂设计, 其表面态决定光催化性能. 目前定量研究催化剂表面缺陷和光催化活性之间的关系是一个巨大的挑战, 未来在精确控制少层氮化碳基光催化剂的表面态方面需要更多的研究工作; 另外, 目前报道的助催化剂大多是大颗粒或者纳米粒子, 未来应将具有高活性的单原子或单活性位点与少层氮化碳结合, 以提高其光催化活性. 对于光催化反应体系, 目前报道的研究工作大部分需要利用使用牺牲剂消耗掉空穴, 以实现高效分解水产氢、CO2还原、合成氨, 从而导致成本较高. 将原本消耗牺牲剂端的氧化半反应替换为附加值更高的化学品同时产氢、CO2还原或者N2还原则可以充分利用光生电子和空穴, 减少浪费. 目前报道的大部分反应机理和反应路径依赖于假设, 缺少确凿的证据, 可以利用先进的原位技术如时间分辨光谱、瞬态和稳态光谱应该用来研究少层氮化碳的激发态载流子动力学和反应中间物种, 进而阐明反应路径. 对于反应器, 目前反应采用的都是罐子反应器, 但存在传质受限和催化剂分离与回收成本问题, 结合工业化需求, 未来可开发流动反应器来解决上述问题. 此外, 大数据、机器学习、人工智能对于繁琐的催化剂筛选以及预测提供了快捷路径, 这将是未来的研究重点.
陈方帅, 吴崇备, 郑耿锋, 曲良体, 韩庆. 少层氮化碳光催化剂合成太阳燃料和高附加值化学品: 现状与展望[J]. 催化学报, 2022, 43(5): 1216-1229.
Fangshuai Chen, Chongbei Wu, Gengfeng Zheng, Liangti Qu, Qing Han. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects[J]. Chinese Journal of Catalysis, 2022, 43(5): 1216-1229.
Fig. 1. The overview diagram of FLCN-based architectures including chemically modified and microstructure-tailored nanosheets, as well as their applications in converting sunlight into fuels and chemicals.
Fig. 2. (a) Schematic illustration of liquid-exfoliation process from bulk CN to CN nanosheets. (b) Nyquist plots of CN nanosheets and bulk CN. Reprinted with permission from Ref. [35]. Copyright 2013, American Chemical Society. (c) Atomic force microscopy (AFM) of CN nanosheets. Inset: the Tyndall effect of the CN nanosheets aqueous dispersion. Reprinted with permission from Ref. [43]. Copyright 2019, Elsevier Inc. (d) The displacement-voltage curve and phase curve of U-T-CN. Reprinted with permission from Ref. [45]. Copyright 2015, Wiley-VCH. (e) Schematic of the formation process of CN nanosheets by the thermal oxidation etching method. Reprinted with permission from Ref. [44]. Copyright 2012, Wiley-VCH. (f) The dipole moment of CN monolayer with different numbers of tri-s-triazine units. Reprinted with permission from Ref. [45]. Copyright 2015, Wiley-VCH.
Fig. 3. (a) Vacuum freeze-drying process for the preparing FLCN seaweed architecture. Reprinted with permission from Ref. [47]. Copyright 2015, Wiley-VCH. (b) Schematic representation of FLCN. Reprinted with permission from Ref. [30]. Copyright 2019, American Chemical Society. SEM images of the pristine DCDA (c), the nanostructured DCDA (d). Inset in (c): Photograph of DCDA solution; inset in (d): Photograph of nanostructured DCDA. TEM images of the mesoporous CN bulk (e) and monolayer CN nanomesh (f). (g) AFM image of monolayer CN nanomesh; (h) Height profiles along the lines in (g). (c?h) Reprinted with permission from Ref. [52]. Copyright 2016, American Chemical Society.
Fig. 4. (a) Schematic of ball-milling process of bulk CN and iodine resulting in the formation of ICNs. (b) AFM image of ICNs. (a,b) Reprinted with permission from Ref. [2]. Copyright 2015, Royal Society of Chemistry. (c) Illustration showing the growth of ultrathin carbon nitride film by CVD onto the surface of quartz substrate. (d) Quartz substrate before and after the film polymerization. Scale bar: 1 cm. (e) TEM image of CN thin film. (c-e) Reprinted with permission from Ref. [56]. Copyright 2020, Wiley-VCH.
Fig. 5. Scheme of heteroatom doped FLCN (a), defect-rich FLCN (b), FLCN/polymer or graphene hybrids (c) and FLCN/metal hybrids (d); (e) TEM image of ICNs. (a?e) Reprinted with permission from Ref. [2]. Copyright 2015, Royal Society of Chemistry. (f) TEM image of nitrogen defects-rich CN nanosheets. Reprinted with permission from Ref. [7]. Copyright 2018, American Chemical Society. (g) TEM images of 2D mesoporous CN on 2D mesoporous graphene sheets(CN@GM). Reprinted with permission from Ref. [101]. Copyright 2017, Wiley-VCH. (h) TEM image of Ag nanoparticle decorated FLCN hybrids. Reprinted with permission from Ref. [3]. Copyright 2019, Wiley-VCH.
Fig. 6. (a) UV-Vis absorption spectra of bulk CN and ICNs-x (x represents I atomic percentage). Inset in (a): PL spectra of bulk CN, I-free CNSs and ICNs-0.34. (b) Photocatalytic H2 production rate of bulk CN, I-free CNs, ICNs-0.76, ICNs-0.34, ICNs-0.19 and ICNs-0.08 under λ > 420 nm. (a,b) Reprinted with permission from Ref. [2]. Copyright 2015, Royal Society of Chemistry. (c) The nitrogen temperature programmed desorption (N2-TPD) curves of BCN and pristine CN; (d) The photocatalytic NH3 yield rates of BCN and pristine CN in N2-saturated Na2SO3 solution under visible-light irradiation. (c,d) Reprinted with permission from Ref. [70]. Copyright 2020, Wiley-VCH.
Fig. 7. (a) UV-Vis spectra of NVs-CN and pristine CN. Inset: schematic diagram of the possible molecular structure of NVs-CN. (b) Photocatalytic activities of CN and NVs-CN under visible light irradiation. Inset in (b): EPR spectra of CN and NVs-CN. TEM images of NVs-CN (c) and CN (d) after photocatalytic reaction. (e) Time-resolved PL decay spectra of BCN and pristine CN. (a?e) Reprinted with permission from Ref. [7]. Copyright 2018, American Chemical Society. (f) Schematic diagram of the possible molecular structure of CN-O. (g) The highest occupied molecular orbitals (VB) and lowest unoccupied molecular orbitals (CB) of CN-O and pristine CN. (h) Mott-Schottky plots for CN-O and pristine CN. (i) EPR spectra (left) and the relative variation of the number of spins (Nx/NCTHP30, right) for pristine CN, CHP, THP, and CTHP30, respectively. (j) H2 evolution and O2 evolution rate of the pristine CN, THP, CHP, and CTHPx, respectively. (f?j) Reprinted with permission from Ref. [26]. Copyright 2021, Royal Society of Chemistry.
Fig. 8. (a) UV-vis absorption curves of CN-Au(111), pristine CN, AuNP. Inset in (a): Transient photocurrent responses of CN-Au(111) and pristine CN, λ > 420 nm. Reproduced with permission [83]. Copyright 2018, American Chemical Society. (b) TEM image of In2O3-cube/FLCN, respectively; inset of (b): statistic edge length of In2O3-cube. (c) Nanosecond transient absorption kinetic analysis at 670 nm and exponential function fitted curves of pristine CN and In2O3-cube/FLCN. (b,c) Reprinted with permission from Ref. [84]. Copyright 2021, Wiley-VCH.
Fig. 9. (a) Schematic illustration of photocatalytic CO2 reduction on FLCN photocatalyst coloaded with reduction and oxidation cocatalysts for solar fuel production. Reproduced with permission [88]. Copyright 2018, Wiley-VCH. (b) Optimized adsorption modes for CO2 over BIF-20 with exposed B-H bonding sites (the top) and the calculated charge distribution over the framework in the neutral state or in the one-electron charged state (the bottom). (c) CO2 adsorption-desorption isotherms of the CNNs, BIF-20/CNNs, and ZIF-8/CNNs at 23 °C. (d) Time course of production evolution in different reaction conditions. (b?d) Reproduced with permission [89]. Copyright 2020, American Chemical Society. (e) TEM image of the resulting 15CN/BVNS heterojunction; (f) The mechanism of the photocatalytic activities for CO2 reduction under UV-visible light using 15CN/BVNS. (g) Illustration of energy band structures of the heterojunction. (e?g) Reproduced with permission [80]. Copyright 2021, Wiley-VCH.
Fig. 10. Scheme of FLCN QDs (a), FLCN nanoribbon (b), FLCN nanomeshes (c), and FLCN assembly (d); (e) TEM image of FLCN QDs. Reproduced with permission [54]. Copyright 2015, Springer Nature. (f) TEM image of FLCN nanoribbon. Reprinted with permission from Ref. [96]. Copyright 2020, Royal Society of Chemistry. (g) TEM image of FLCN nanomesh. Reprinted with permission from Ref. [52]. Copyright 2016, American Chemical Society. (h) TEM image of FLCN assembly. Reprinted with permission from Ref. [47]. Copyright 2015, Wiley-VCH.
Fig. 11. (a) Schematic illustration of band structures of bulk CN and FLCN QDs, and their corresponding Photographs of the solutions in water with concentrations of 0.1 mg·mL-1 after one week. (a) Reprinted with permission from Ref. [54]. Copyright 2015, Springer Nature. (b) A-D motifs in TOH-CN. Inset: the differences in hydrophilicity between bulk CN (the top) and TOH-CN (the bottom); (c) Energy schematic of the TOH-CN for water splitting. (b,c) Reprinted with permission from Ref. [96]. Copyright 2020, Royal Society of Chemistry. (d) Proposed reaction mechanism of oxidative coupling of benzylamine over FLCN. (d) Reprinted with permission from Ref. [30]. Copyright 2019, American Chemical Society. (e) TEM image of G@CN MMs. The pore size of several nanometers in diameter originates from GM, and the hole size larger than 10 nm corresponds to CNM. (e) Reprinted with permission from Ref. [101]. Copyright 2017, Wiley-VCH. (f) H2O2 production is accomplished by photocatalysis. (f) Reprinted with permission from Ref. [3]. Copyright 2019, Wiley-VCH. (g) Transient photocurrents of CN seaweed (1), and CN nanomesh (2), and CN bulk (3) under visible light illumination. (g) Reprinted with permission from Ref. [47]. Copyright 2015, Wiley-VCH. (h) Photocatalytic H2 yield rates of Pt/bulk CN, CN fiber@N-carbon, Pt/CN fiber, and CN/N-carbon fiber; (i) The mechanism of the photocatalytic activities for H2 evolution using CN/N-carbon fiber. (h,i) Reprinted with permission from Ref. [110]. Copyright 2016, Wiley-VCH.
Photocatalyst | Synthesis method | Regulation strategy | Badgap (eV) | CB (eV) | VB (eV) | Performance improvement | Photocatalytic performance | Ref. |
---|---|---|---|---|---|---|---|---|
I-doped CN nanosheets | Ball milling | Heteroatom doping | 2.37 | -1.01 | 1.36 | (1), (3) | HER = 890 μmol g-1 h-1 AQE = 3.0% at 420 nm | [2] |
Ag@FLCN | Exfoliation | Microstructure mediation | 2.7 | -1.3 | 1.4 | (1), (2), (3) | H2O2 yield rate = 1185 μmol g-1 h-1 | [3] |
NVs-CN | Molecular self-assembly | Defect engineering | 1.78 | -0.6 | 1.18 | (1), (2), (3) | HER = 37680 μmol g-1 h-1 AQE = 34.4% at 400 nm | [7] |
Porous P-doped FLCN | Thermal oxidation etching | Heteroatom doping | 2.93 | -0.83 | 2.08 | (1), (2), (3) | HER = 1590 μmol g-1 h-1 AQE = 3.65% at 420 nm | [20] |
CN-O | Molecular self-assembly Vacuum freeze-drying | Microstructure Mediation, hybrid structures | 2.23 | N/A | N/A | (1), (2), (3) | HER = 10379 μmol g-1 h-1 AQE = 29.4% at 400 nm | [26] |
BDCN/FLCN | Exfoliation | Hybrid structures, defect engineering, heteroatom doping | 2.73 | -0.31 | 2.42 | (1), (2), (3) | HER = 658.8 μmol g-1 h-1 OER = 328.4 μmol g-1 h-1 | [27] |
Porous FLCN | Molecular self-assembly | Microstructure mediation | 2.75 | -0.97 | 1.78 | (1), (2) | HER = 79900 μmol g-1 h-1 AQE = 9.8% at 400 nm | [30] |
Atomically-thin porous CN | Thermal oxidation etching | Defect engineering | 2.96 | -0.73 | 1.69 | (2), (3) | HER = 1233.5 μmol g-1 h-1 | [31] |
Ultrathin CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.94 | -1.17 | 1.77 | (2) | HER = 12016 μmol g-1 h-1 | [46] |
CN seaweed | Vacuum freeze-drying | Microstructure mediation | 2.72 | N/A | N/A | (2), (3) | HER = 9900 μmol g-1 h-1 AQE = 7.8% at 400 nm | [47] |
Atomically Thin CN nanomesh | Exfoliation Vacuum freeze-drying | Microstructure mediation | 2.75 | -1.25 | 1.50 | (1), (2), (3) | HER = 8510 μmol g-1 h-1 AQE = 5.1% at 420 nm | [52] |
3D porous CN | Ball milling | Microstructure mediation | 2.49 | -0.63 | 1.86 | (2), (3) | HER = 598 μmol g-1 h-1 AQE = 3.31% at 420 nm | [53] |
FLCN QDs | Ball milling | Microstructure mediation | 2.69 | -1.55 | 1.14 | (2), (3) | HER = 1365 μmol g-1 h-1 AQE = 3.6% at 420 nm | [54] |
FLCN nanosheets | Thermal oxidation etching | Defect engineering | 2.30 | -0.77 | 1.85 | (2), (3) | HER = 5375 μmol g-1 h-1 | [72] |
CTHP30 | Vacuum freeze-drying | Defect engineering | 2.65 | -1.2 | 1.45 | (1), (2), (3) | HER = 12723 μmol g-1 h-1 AQE = 11.97% at 400 nm OER = 221 μmol g-1 h-1 | [78] |
FLCN/BiVO4 nanosheets | Exfoliation | Hybrid structures | 2.7 | -1.15 | 1.55 | (1), (3) | CO2 reduction into CO rate =5.18 μmol g-1 h-1 | [80] |
BIF-20@CN nanosheets | Exfoliation | Hybrid structures | 2.37 | -0.72 | 1.65 | (2) | CO2 reduction into CO rate = 2693 μmol g-1 h-1 CO2 reduction into CH4 rate = 776 μmol g-1 h-1 | [89] |
TOH-CN | Vacuum freeze-drying | Microstructure mediation, hybrid structures | 2.35 1.91 | N/A | N/A | (1), (2) | HER = 2027.9 μmol g-1 h-1 AQE = 7.9% at 420 nm OER = 142.5 μmol g-1 h-1 | [96] |
CN nanosheets | Exfoliation | Microstructure mediation | 2.35 | -1.4 | 0.95 | (1), (2) | HER = 3100 μmol g-1 h-1 | [105] |
CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.77 | N/A | N/A | (2) | HER = 19000 μmol g-1 h-1 AQE = 3.65% at 420 nm | [106] |
Ultrathin CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.86 | N/A | N/A | (2), (3) | HER = 2560 μmol g-1 h-1 | [107] |
C-rich CN nanosheets | Thermal oxidation etching | Defect engineering | 2.73 | -0.35 | 2.28 | (2), (3) | HER = 3960 μmol g-1 h-1 | [108] |
Ultrathin CN/ MoS2 nanosheet | Ball milling | Hybrid structures | 1.44 | -0.34 | 1.78 | (2) | HER = 385.04 μmol g-1 h-1 | [109] |
CN/N-carbon fiber | Vacuum freeze-drying | Microstructure mediation, hybrid structures | 2.2 | -0.73 | 1.47 | (1), (2), (3) | HER = 16885 μmol g-1 h-1 AQE = 14.3% at 420 nm | [110] |
Table 1 Summary of the typical FLCN-based photocatalysts for solar fuels and chemicals.
Photocatalyst | Synthesis method | Regulation strategy | Badgap (eV) | CB (eV) | VB (eV) | Performance improvement | Photocatalytic performance | Ref. |
---|---|---|---|---|---|---|---|---|
I-doped CN nanosheets | Ball milling | Heteroatom doping | 2.37 | -1.01 | 1.36 | (1), (3) | HER = 890 μmol g-1 h-1 AQE = 3.0% at 420 nm | [2] |
Ag@FLCN | Exfoliation | Microstructure mediation | 2.7 | -1.3 | 1.4 | (1), (2), (3) | H2O2 yield rate = 1185 μmol g-1 h-1 | [3] |
NVs-CN | Molecular self-assembly | Defect engineering | 1.78 | -0.6 | 1.18 | (1), (2), (3) | HER = 37680 μmol g-1 h-1 AQE = 34.4% at 400 nm | [7] |
Porous P-doped FLCN | Thermal oxidation etching | Heteroatom doping | 2.93 | -0.83 | 2.08 | (1), (2), (3) | HER = 1590 μmol g-1 h-1 AQE = 3.65% at 420 nm | [20] |
CN-O | Molecular self-assembly Vacuum freeze-drying | Microstructure Mediation, hybrid structures | 2.23 | N/A | N/A | (1), (2), (3) | HER = 10379 μmol g-1 h-1 AQE = 29.4% at 400 nm | [26] |
BDCN/FLCN | Exfoliation | Hybrid structures, defect engineering, heteroatom doping | 2.73 | -0.31 | 2.42 | (1), (2), (3) | HER = 658.8 μmol g-1 h-1 OER = 328.4 μmol g-1 h-1 | [27] |
Porous FLCN | Molecular self-assembly | Microstructure mediation | 2.75 | -0.97 | 1.78 | (1), (2) | HER = 79900 μmol g-1 h-1 AQE = 9.8% at 400 nm | [30] |
Atomically-thin porous CN | Thermal oxidation etching | Defect engineering | 2.96 | -0.73 | 1.69 | (2), (3) | HER = 1233.5 μmol g-1 h-1 | [31] |
Ultrathin CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.94 | -1.17 | 1.77 | (2) | HER = 12016 μmol g-1 h-1 | [46] |
CN seaweed | Vacuum freeze-drying | Microstructure mediation | 2.72 | N/A | N/A | (2), (3) | HER = 9900 μmol g-1 h-1 AQE = 7.8% at 400 nm | [47] |
Atomically Thin CN nanomesh | Exfoliation Vacuum freeze-drying | Microstructure mediation | 2.75 | -1.25 | 1.50 | (1), (2), (3) | HER = 8510 μmol g-1 h-1 AQE = 5.1% at 420 nm | [52] |
3D porous CN | Ball milling | Microstructure mediation | 2.49 | -0.63 | 1.86 | (2), (3) | HER = 598 μmol g-1 h-1 AQE = 3.31% at 420 nm | [53] |
FLCN QDs | Ball milling | Microstructure mediation | 2.69 | -1.55 | 1.14 | (2), (3) | HER = 1365 μmol g-1 h-1 AQE = 3.6% at 420 nm | [54] |
FLCN nanosheets | Thermal oxidation etching | Defect engineering | 2.30 | -0.77 | 1.85 | (2), (3) | HER = 5375 μmol g-1 h-1 | [72] |
CTHP30 | Vacuum freeze-drying | Defect engineering | 2.65 | -1.2 | 1.45 | (1), (2), (3) | HER = 12723 μmol g-1 h-1 AQE = 11.97% at 400 nm OER = 221 μmol g-1 h-1 | [78] |
FLCN/BiVO4 nanosheets | Exfoliation | Hybrid structures | 2.7 | -1.15 | 1.55 | (1), (3) | CO2 reduction into CO rate =5.18 μmol g-1 h-1 | [80] |
BIF-20@CN nanosheets | Exfoliation | Hybrid structures | 2.37 | -0.72 | 1.65 | (2) | CO2 reduction into CO rate = 2693 μmol g-1 h-1 CO2 reduction into CH4 rate = 776 μmol g-1 h-1 | [89] |
TOH-CN | Vacuum freeze-drying | Microstructure mediation, hybrid structures | 2.35 1.91 | N/A | N/A | (1), (2) | HER = 2027.9 μmol g-1 h-1 AQE = 7.9% at 420 nm OER = 142.5 μmol g-1 h-1 | [96] |
CN nanosheets | Exfoliation | Microstructure mediation | 2.35 | -1.4 | 0.95 | (1), (2) | HER = 3100 μmol g-1 h-1 | [105] |
CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.77 | N/A | N/A | (2) | HER = 19000 μmol g-1 h-1 AQE = 3.65% at 420 nm | [106] |
Ultrathin CN nanosheets | Thermal oxidation etching | Microstructure mediation | 2.86 | N/A | N/A | (2), (3) | HER = 2560 μmol g-1 h-1 | [107] |
C-rich CN nanosheets | Thermal oxidation etching | Defect engineering | 2.73 | -0.35 | 2.28 | (2), (3) | HER = 3960 μmol g-1 h-1 | [108] |
Ultrathin CN/ MoS2 nanosheet | Ball milling | Hybrid structures | 1.44 | -0.34 | 1.78 | (2) | HER = 385.04 μmol g-1 h-1 | [109] |
CN/N-carbon fiber | Vacuum freeze-drying | Microstructure mediation, hybrid structures | 2.2 | -0.73 | 1.47 | (1), (2), (3) | HER = 16885 μmol g-1 h-1 AQE = 14.3% at 420 nm | [110] |
|
[1] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[2] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[3] | Mengistu Tulu Gonfa, 申升, 陈浪, 胡彪, 周威, 白张君, 区泽堂, 尹双凤. 光催化苯制苯酚的研究进展[J]. 催化学报, 2023, 49(6): 16-41. |
[4] | 李宁, 高雪云, 苏俊珲, 高旸钦, 戈磊. 类金属WO2/g-C3N4复合光催化剂的构造及其优异的光催化性能[J]. 催化学报, 2023, 47(4): 161-170. |
[5] | 王宁宁, 王硕, 李灿, 李晨阳, 刘春江, 陈闪山, 章福祥. ZrO2修饰均匀氮掺杂氧化物MgTa2O6-xNx以提升其光催化分解水性能[J]. 催化学报, 2023, 54(11): 220-228. |
[6] | 刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53(10): 13-30. |
[7] | 雷一鸣, 叶金花, Jordi García-Antón, 刘慧敏. 内建电场辅助光催化甲烷干重整的研究进展[J]. 催化学报, 2023, 53(10): 72-101. |
[8] | 杨辉, 代凯, 张金锋, Graham Dawson. 无机-有机杂化光催化剂: 合成、机理及应用[J]. 催化学报, 2022, 43(8): 2111-2140. |
[9] | 林波, 夏梦阳, 许堡荣, 种奔, 陈子浩, 杨贵东. 仿生纳米结构的g-C3N4基光催化剂研究进展[J]. 催化学报, 2022, 43(8): 2141-2172. |
[10] | 吴玉兰, 祁明雨, 谭昌龙, 唐紫蓉, 徐艺军. CdS/WO3复合材料用于光催化选择性芳香醇氧化及析氢反应[J]. 催化学报, 2022, 43(7): 1851-1859. |
[11] | 王爱霞, 张临河, 李旭力, 高旸钦, 李宁, 卢贵武, 戈磊. 三元复合材料Ni2P@UiO-66-NH2/Zn0.5Cd0.5S的合成及其显著提升光催化产氢性能[J]. 催化学报, 2022, 43(5): 1295-1305. |
[12] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[13] | 赵英男, 覃星, 赵鑫宇, 王馨, 谭华桥, 孙慧颖, 闫刚, 李海玮, 何咏基, 李顺诚. 多酸掺杂Bi2O3-x/Bi光催化剂用于高效可见光催化降解四溴双酚A和NO去除[J]. 催化学报, 2022, 43(3): 771-781. |
[14] | 李月华, 唐紫蓉, 徐艺军. 以石墨烯作用为导向的多功能石墨烯基复合光催化剂[J]. 催化学报, 2022, 43(3): 708-730. |
[15] | 王黎, 李雨坤, 吴超, 李鑫, 邵国胜, 张鹏. 追踪SrTiO3/CoP/Mo2C纳米纤维中的电荷转移路径以增强光催化产生太阳燃料[J]. 催化学报, 2022, 43(2): 507-518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||