催化学报 ›› 2022, Vol. 43 ›› Issue (3): 771-781.DOI: 10.1016/S1872-2067(21)63843-3

• 论文 • 上一篇    下一篇

多酸掺杂Bi2O3-x/Bi光催化剂用于高效可见光催化降解四溴双酚A和NO去除

赵英男a,b,, 覃星a,, 赵鑫宇b, 王馨b, 谭华桥a,b,*(), 孙慧颖b, 闫刚c,&(), 李海玮d, 何咏基a,#(), 李顺诚d   

  1. a香港教育大学科学与环境研究系, 香港
    b东北师范大学化学学院, 教育部多金属氧酸盐与网状材料化学重点实验室, 吉林长春 130024
    c吉林建筑大学材料科学与工程学院, 吉林长春 130018
    d香港理工大学土木与环境工程系, 香港
  • 收稿日期:2021-03-15 修回日期:2021-03-15 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 谭华桥,闫刚,何咏基
  • 作者简介:第一联系人:

    共同第一作者

  • 基金资助:
    国家自然科学基金(21771033);中央高校基本科研业务费(2412018BJ001);“香江学者”计划(2018–2019);“香江学者”计划(XJ2018021);香港政府研究资助局一般研究基金(18301117);香港教育学院院长研究基金(04425)

Polyoxometalates-doped Bi2O3-x/Bi photocatalyst for highly efficient visible-light photodegradation of tetrabromobisphenol A and removal of NO

Yingnan Zhaoa,b,, Xing Qina,, Xinyu Zhaob, Xin Wangb, Huaqiao Tana,b,*(), Huiying Sunb, Gang Yanc,&(), Haiwei Lid, Wingkei Hoa,#(), Shun-cheng Leed   

  1. aDepartment of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
    bKey Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, China
    cCollege of Material Science and Engineering, Jilin Jianzhu University, Changchun 130018, Jilin, China
    dDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • Received:2021-03-15 Revised:2021-03-15 Online:2022-03-18 Published:2022-02-18
  • Contact: Huaqiao Tan, Gang Yan, Wingkei Ho
  • About author:Wing Kei HO obtained his BS and PhD in the Chinese University of Hong Kong. He works as a postdoctoral fellow in the Department of Civil & Environmental Engineering, the Hong Kong Polytechnic University and the Department of Mechanical & Materials Engineering, the University of Western Ontario, Canada. He is currently a professor at the Education University of Hong Kong and an associate head of SES. He is also an adjunct professor of Xi'an Jiaotong University, P.R. China and Institute of Earth Environment, Chinese Academy of Sciences, P.R. China. His primary research interest is heterogeneous catalysis and photocatalysis for energy conversion and environmental remediation. He Joined the editorial board of Chin. J. Catal. In 2020.
    First author contact:

    These authors contributed equally.

  • Supported by:
    National Natural Science Foundation of China(21771033);Fundamental Research Funds for the Central Universities(2412018BJ001);“HongKong Scholar” programme(2018–2019);“HongKong Scholar” programme(XJ2018021);General Research Fund, Research Grants Council of Hong Kong Government(18301117);Dean’s Research Fund, EdUHK(04425)

摘要:

四溴双酚A(TBBPA)是一种重要的塑料添加剂和阻燃剂, 广泛用于树脂、塑料、胶黏剂以及涂料中. 它不仅是持久性的机污染物, 还是一种内分泌干扰物, 具有免疫毒性、神经毒性和细胞毒性. NOx, 特别是NO, 是主要的大气污染物之一, 是形成PM2.5的重要前体, 也容易引起酸雨, 引发光化学烟雾、臭氧损耗、温室效应等, 严重危害生态环境和人类健康. 光催化技术以太阳能为驱动力, 被认为是高效去除各种环境污染物的有效策略之一. 但目前报道的光催化剂, 大多仅适用于特定条件下单一污染物的高活性去除, 严重限制了其发展, 难以满足日益复杂的多功能环境净化需求. 因此, 设计廉价、高效、稳定的广谱光催化剂对拓展光催化的应用具有重要意义.
廉价的铋基半导体光催化剂具有良好的可见光吸收能力, 被认为是有前景的高效可见光催化剂之一. 其中, Bi2O3作为组成最简单的铋基光催化剂, 因其无毒、可见光催化活性好、稳定性好而备受关注. 同时, 其价带是由O 2p以及Bi 6s轨道杂化而成, 有利于光生载流子在体相中的迁移, 增强导电性. 但Bi2O3在实际应用中仍面临着氧化还原活性不足和光生载流子分离效率低等问题, 限制了其应用. 因此, 对Bi2O3进行修饰和调控, 以增强其光催化活性, 拓展其应用范围, 成为推动Bi2O3光催化剂实用化的关键和挑战.
本文通过简单的静电纺丝/煅烧/原位NaBH4还原方法, 制备了一系列多阴离子[PW12O40]3-(PW12)掺杂的Bi2O3-x/Bi光催化剂PW12@Bi2O3-x/Bi-n(PBOB-n, 其中n为NaBH4的用量, n = 6, 12, 18, 24和48 mg). 在该复合光催化剂中, PW12的掺杂可以有效地调节Bi2O3-x的电子结构, 并改善其氧化还原性能. 同时, PW12作为电子浅阱, 还可以促进光生载流子的分离. 此外, 金属Bi纳米粒子与PW12@Bi2O3-x之间良好的肖特基结进一步加速了光生载流子的分离. 这些因素的协同作用使PBOB-n表现出良好的光催化活性, 其中, PBOB-18光催化活性最好, 在可见光照射下催化TBBPA降解率达93.7%, 较Bi2O3活性高4.4倍. 此外, PBOB-18表现出较高的光催化去除NO活性, 在30 min内去除率达到83.3%, 是目前活性较高的Bi基光催化剂之一. 本文还结合实验结果提出了PBOB-18高效光催化去除TBBPA和NO的可能机理. 综上, 本文为低成本、高效、稳定和多功能光催化剂的设计提供了一定参考.

关键词: 铋基光催化剂, 多酸, 铋, 光催化降解, NO去除

Abstract:

Bismuth-based photocatalysts are a class of excellent visible-light photocatalysts; however, their redox activity is relatively poor and the efficiency of photogenerated carrier separation is low, limiting their development and application in the field of photocatalysis. To address these issues, a series of polyoxometalate PW12O403--doped Bi2O3-x/Bi Schottky photocatalysts PW12@Bi2O3-x/Bi-n (PBOB-n, where n is the amount of NaBH4, i.e., 6, 12, 18, 24, and 48 mg) were prepared by a simple electrospinning/calcination/in-situ NaBH4 reduction method. In this composite photocatalyst, the doping of PW12 could effectively adjust the electronic structure of Bi2O3-x and improve its redox properties. As a shallow electron trap, PW12 promoted the separation of the photogenerated carriers. Furthermore, desirable Schottky junction between the metal Bi nanoparticles and PW12@Bi2O3-x further accelerated the separation of the photogenerated carriers. The synergistic effect of the aforementioned factors endowed PBOB-n with excellent photocatalytic activity. Among the samples, PBOB-18 exhibited superior photocatalytic activity. Under visible-light irradiation, 93.7% (20 mg catalyst) of 20 ppm tetrabromobisphenol A (TBBPA, 20 mL) was degraded in 60 min. Its activity was 4.4 times higher than that of Bi2O3. PBOB-18 also exhibited an ultrahigh photocatalytic performance for the removal of NO. Its removal rate (600 ppb) reached 83.3% in 30 min, making it one of the most active Bi-based photocatalysts. Furthermore, the photocatalytic mechanisms of PBOB-18 for TBBPA and NO have been proposed. This work provides a new direction and reference for the design of low-cost, efficient, stable, and versatile photocatalysts.

Key words: Bismuth-based photocatalyst, Polyoxometalates, Bi, Photocatalytic degradation, NO removal