催化学报 ›› 2021, Vol. 42 ›› Issue (2): 271-278.DOI: 10.1016/S1872-2067(20)63639-7

• 论文 • 上一篇    下一篇

多孔Fe3O4修饰的Ni(OH)2纳米片的制备及其析氧性能研究

丁钰a,†, 苗博强b,†, 赵越b, 李富民a, 蒋育澄a,#(), 李淑妮a,*(), 陈煜b   

  1. a陕西师范大学化学化工学院, 陕西西安710062
    b陕西师范大学材料与科学工程学院, 陕西西安710062
  • 收稿日期:2020-04-08 接受日期:2020-05-13 出版日期:2021-02-18 发布日期:2021-01-21
  • 通讯作者: 蒋育澄,李淑妮
  • 作者简介:

    共同第一作者.

  • 基金资助:
    国家自然科学基金(21873061);国家自然科学基金(21972089);中央高校基金(GK201701003);中央高校基金(2017TS020);国家本科生创新和创业培训基金(CX2019165)

Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction

Yu Dinga,†, Bo-Qiang Miaob,†, Yue Zhaob, Fu-Min Lia, Yu-Cheng Jianga,#(), Shu-Ni Lia,*(), Yu Chenb   

  1. aKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi, China
    bSchool of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi, China
  • Received:2020-04-08 Accepted:2020-05-13 Online:2021-02-18 Published:2021-01-21
  • Contact: Yu-Cheng Jiang,Shu-Ni Li
  • About author:#E-mail: jyc@snnu.edu.cn
    *E-mail: lishuni@snnu.edu.cn;
    First author contact:

    These authors contributed to this work equally.

  • Supported by:
    National Natural Science Foundation of China(21873061);National Natural Science Foundation of China(21972089);Fundamental Research Funds for the Central Universities(GK201701003);Fundamental Research Funds for the Central Universities(2017TS020);National Training Program of Innovation and Entrepreneurship for Undergraduates(CX2019165)

摘要:

近年来, 基于析氧反应(OER)的电化学能量转换体系(如电化学制氢、金属空气电池、氮气电还原和二氧化碳电还原)日益受到人们的关注. 各种过渡金属基(Mn, Ni, Co, Fe, Cu等)纳米材料(硫化物、氢氧化物、氧化物、磷化物和氮化物等)被认为是潜在的、可以代替贵金属的碱性OER催化剂. 其中, 高活性和低成本的Ni(OH)2基电催化剂被广泛关注. 由于面积效应、结构效应、电子效应和协同效应等因素, Ni(OH)2基纳米材料的电化学活性与其形貌和化学成分密切相关. 引入纳米尺寸的孔, 不仅加快了传质, 而且增加了边缘活性原子的数量, 因而有利于活性的增强. 超薄二维(2D)纳米片因具有独特的结构特征, 可以为电催化反应提供充足的反应位点和低配位数的表面活性原子. 杂原子的引入可以调节纳米材料的电子结构和几何结构以提高它们的电催化活性. 本文提出了一种简单的混合氰胶水解策略, 成功合成了Fe掺杂的Ni(OH)2纳米片(Ni(OH)2-Fe H-STs). 氰胶前驱体骨架结构有助于形成超薄多孔的2D结构, 而且, 通过调节前驱体的浓度就可以获得一定镍铁原子比的产物. 不同Fe含量的Ni(OH)2纳米片的OER活性测试结果表明, Ni/Fe比为3:1的Ni(OH)2-Fe H-STs-Ni3Fe1在碱性环境中具有最佳的OER活性. 由于Ni(OH)2-Fe H-STs-Ni3Fe1的超薄2D结构使大多数金属原子暴露在表面, 使原子利用率最大化. 同时, 超薄表面上高活性的低配位数的中心原子, 可以作为催化OER的高活性中心. 薄片上的孔隙有效地增加了高活性边缘原子的数量并且能够加速反应物和生成物的传质. XPS测试结果表明, Fe的引入显著改变了Ni的电子结构, 提高了Ni(OH)2 H-STs的导电性, 从而促进了电化学过程中NiIV活性物种的产生, 进而改变其OER本征活性. 三维镍泡沫(NF)可以防止负载纳米材料的聚集, 提高转移反应物/产物的传质速率. 因此, 本文将Fe掺杂的Ni(OH)2纳米片直接生长在NF基底(简写为Ni(OH)2-Fe H-STs/NF). 结果表明, NF基底的引入进一步提升导电性和增加传质. 综上所述, 由于具有高比表面积、丰富的活性原子、Fe/Ni原子之间的协同效应以及NF基底的高导电性和三维多孔特性, 通过氰胶水解法获得的Ni(OH)2-Fe H-STs/NF在KOH溶液中表现出优异的OER活性, 在10 mA cm-2电流密度下过电位仅为200 mV, Tafel斜率为56 mV dec-1, 并且材料具有良好的稳定性.

关键词: 析氧反应, 过渡金属纳米材料, 多孔二维材料, 异原子掺杂, 电催化

Abstract:

The oxygen evolution reaction (OER) is a half-reaction of water electrolysis, and the OER performance of an electrocatalyst is significantly related to its energy conversion efficiency. Due to their high OER activity, transition metal-based nanomaterials have become potential low-cost substitutes for Ir/Ru-based OER electrocatalysts in an alkaline environment. Herein, holey Fe3O4-coupled Ni(OH)2 sheets (Ni(OH)2-Fe H-STs) were easily achieved by a simple mixed-cyanogel hydrolysis strategy. The two-dimensional (2D) Ni(OH)2-Fe H-STs with ca. 1 nm thickness have a high specific surface area, abundant unsaturated coordination atoms, and numerous pores, which are highly favorable for electrocatalytic reactions. Meanwhile, the introduction of Fe improves the conductivity and regulates the electronic structure of Ni. Due to their special structural features and synergistic effect between the Fe and Ni atoms, Ni(OH)2-Fe H-STs with an optimal Ni/Fe ratio show excellent OER activity in a 1 M KOH solution, which significantly exceeds that of the commercial RuO2 nanoparticle electrocatalyst. Furthermore, Ni(OH)2-Fe H-STs can be grown on nickel foam (NF), and the resulting material exhibits enhanced OER activity, such as a small overpotential of 200 mV and a small Tafel slope of 56 mV dec-1, than that of Ni(OH)2-Fe H-STs without NF.

Key words: Oxygen evolution reaction, Transition metal-based nanomaterials, Holey two-dimensional materials, Heteroatom doping, Electrocatalysis