催化学报 ›› 2021, Vol. 42 ›› Issue (7): 1195-1204.DOI: 10.1016/S1872-2067(20)63737-8

• 论文 • 上一篇    下一篇

具有独特电子结构的锌掺杂SnO2介导形成氧空位实现高效稳定的光催化降解甲苯

武慧中a, 王佳栋a, 陈瑞敏a, 袁潮苇a, 张锦a, 张育新c, 盛剑平b,e,*(), 董帆a,b,d,e,#()   

  1. a重庆工商大学环境与资源学院, 催化与新环境材料重庆市重点实验室, 重庆400067
    b电子科技大学基础与前沿研究院, 环境与能源催化研究中心, 四川成都611731
    c重庆大学材料科学与工程学院, 重庆400074
    d郑州大学材料科学与工程学院, 低碳环保材料智能设计国际联合研究中心, 河南郑州450001
    e电子科技大学, 长三角研究院(湖州), 浙江湖州313001
  • 收稿日期:2020-10-08 接受日期:2020-11-18 出版日期:2021-07-18 发布日期:2020-12-10
  • 通讯作者: 盛剑平,董帆
  • 基金资助:
    国家自然科学基金(21822601);国家自然科学基金(52002054);国家自然科学基金(21777011);重庆市创新团队(CXQT19023);重庆市自然科学基金重点项目(cstc2017jcyjBX0052)

Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation

Huizhong Wua, Jiadong Wanga, Ruimin Chena, Chaowei Yuana, Jin Zhanga, Yuxin Zhangc, Jianping Shengb,e,*(), Fan Donga,b,d,e,#()   

  1. aChongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
    bResearch Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    cCollege of Materials Science and Engineering, Chongqing University, Chongqing 400074, China
    dState Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    eYangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China
  • Received:2020-10-08 Accepted:2020-11-18 Online:2021-07-18 Published:2020-12-10
  • Contact: Jianping Sheng,Fan Dong
  • About author:# E-mail: dfctbu@126.com, dongfan@uestc.edu.cn
    * E-mail: jpshengchn@163.com;
  • Supported by:
    National Natural Science Foundation of China(21822601);National Natural Science Foundation of China(52002054);National Natural Science Foundation of China(21777011);Innovative Research Team of Chongqing(CXQT19023);Key Natural Science Foundation of Chongqing(cstc2017jcyjBX0052)

摘要:

室内家具和工业生产排放的挥发性有机化合物(VOCs)是典型的空气污染物, 对环境和人类健康造成严重威胁. 然而, 目前广泛应用的二氧化钛(P25)光催化剂在降解VOCs, 尤其是降解芳香烃的过程中, 存在光催化转化率低, 失活快等问题. 因此, 开发具有高效和稳定性的新型光催化剂来降解VOCs, 并将其实际应用是重要的科学问题. SnO2是一种稳定无毒的半导体光催化剂, 但电子和空穴的复合率较高. 掺杂过渡金属离子后可以提供缺陷态来抑制催化剂电子空穴对的快速复合, 促进界面电荷转移. 相比其他金属离子, Zn2+与Sn4+的离子半径非常相近, 因此Zn2+会很容易掺杂到SnO2晶格中. 并且用Zn2+取代Sn4+会形成表面修饰, 即形成更多的氧空位(SOVs)来补偿正电荷. 氧空位的存在不仅会产生缺陷能级, 而且还可以促进大量局域电子的累积. SnO2上氧空位和Zn掺杂结构的协同作用可以弥补单一的外源离子掺杂或产生氧空位的不足. 因此, 本文采用一种简便的一步法合成催化剂Zn-SnO2, 即在SnO2上同时实现Zn掺杂和形成SOVs, 利用两者对SnO2的协同作用提高电荷转移和分离效率, 使其在低或高相对湿度条件下均表现出高效、稳定的光催化降解甲苯性能.
采用低温固态电子顺磁共振(EPR)检测了催化剂中的氧空位, 在纯SnO2中仅检测到弱的EPR信号, 而Zn-SnO2上的EPR信号非常强, 表明Zn2+的掺杂诱导产生了大量的氧空位. 扫描电镜和透射电镜结果表明, 掺杂Zn2+可以有效抑制SnO2纳米粒子的晶体生长和相变, 使得掺杂Zn2+的SnO2粒子的粒径显著减小, 从而导致SOVs含量增加, 此外粒径的减小有利于增大其比表面积, 增加活性吸附位点. 紫外可见漫反射结果表明, Zn-SnO2拓宽了光吸收范围, 这归因于锌掺杂和氧空位的协同作用. 在紫外光照射下, Zn-SnO2的光催化降解甲苯性能优于纯SnO2和P25, 降解率达到77.5%. ESR光谱结果表明, Zn-SnO2上的电子自旋共振信号强度均强于纯SnO2和P25, 说明Zn-SnO2具有较好的氧化能力, 也与DFT计算O2和H2O的吸附能结果相吻合, 表明了锌掺杂和SOVs对SnO2的协同作用可以显著提高电荷转移和分离效率. 最后, 通过原位红外光谱和DFT计算方法对甲苯降解的机理进行了研究. 结果表明, 甲苯的苯环在纯SnO2表面倾向于在苯甲酸阶段打开, 在Zn-SnO2表面更倾向于在苯甲醛阶段选择性地开环. 可见, Zn-SnO2光催化剂缩短了甲苯的降解路径, 并能显著抑制中间毒副产物产生. 综上, 本工作提供了一种安全, 高效和可持续的降解VOCs的光催化剂.

关键词: 光催化, 锌掺杂, 表面氧空穴, 甲苯, 原位红外光谱

Abstract:

To optimize the electronic structure of photocatalyst, a facile one-step approach is developed for the simultaneous realization of Zn-doping and surface oxygen vacancies (SOVs) formation on SnO2. The Zn-doped SnO2 with abundant SOVs exhibits efficient and stable performance for photocatalytic degradation of toluene under both low and high relative humidity. Experimental and theoretical calculations results show that the synergistic effects of Zn-doping and SOVs on SnO2 can considerably boost the charge transfer and separation efficiency. Utilizing the in situ DRIFTS and theoretical calculations methods, it is revealed that the benzene ring of toluene is opened at benzoic acid on the SnO2 surface and selectively at benzaldehyde on the Zn-doped SnO2 surface. This implies that Zn-doped SnO2 photocatalysts shorten the pathway of toluene degradation, and toxic intermediates can be significantly inhibited. This work could provide a promising and sustainable route for safe and efficient removal of aromatic VOCs with photocatalytic technology.

Key words: Photocatalysis, Zn-doping, Surface oxygen vacancies, Toluene, In situ FT-IR