催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1608-1616.DOI: 10.1016/S1872-2067(20)63776-7

• 论文 • 上一篇    下一篇

氰基修饰石墨相氮化碳构建高效的活性位点用于光催化还原CO2

李访a,b, 岳晓阳a, 周海平c, 范佳杰d, 向全军a,b,*()   

  1. a电子科技大学电子科学与工程学院, 电子薄膜与集成器件国家重点实验室, 四川成都610054
    b电子科技大学长三角研究院(湖州), 浙江湖州313001
    c电子科技大学材料与能源学院, 四川成都610054
    d郑州大学材料科学与工程学院, 河南郑州450002
  • 收稿日期:2021-01-12 接受日期:2021-02-01 出版日期:2021-09-18 发布日期:2021-05-16
  • 通讯作者: 向全军
  • 作者简介:* 电话/传真: (028)83207063; 电子信箱: xiangqj@uestc.edu.cn
  • 基金资助:
    国家自然科学基金(51672099);国家自然科学基金(52073263);四川省科技计划资助(2019JDRC0027);四川省科技计划资助(2019YFG0222);中央高校基金(2017-QR-25)

Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction

Fang Lia,b, Xiaoyang Yuea, Haiping Zhouc, Jiajie Fand, Quanjun Xianga,b,*()   

  1. aState Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuang, China
    bYangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China
    cSchool of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuang, China
    dSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, Henan, China
  • Received:2021-01-12 Accepted:2021-02-01 Online:2021-09-18 Published:2021-05-16
  • Contact: Quanjun Xiang
  • About author:* Tel/Fax: +86-28-83207063; E-mail: xiangqj@uestc.edu.cn
    Quanjun Xiang received his Ph.D. degree in materials chemistry and physics in 2012 from Wuhan University of Technology. He was a postdoctoral fellow at the City University of Hong Kong from 2013 to 2015, and an associate professor from 2012 to 2017 at Huazhong Agricultural University. He is now a professor at the School of Electronic Science and Engineering, University of Electronic Science and Technology of China. His research interests include semiconductor photocatalysis, photocatalytic hydrogen production, CO2 reduction to hydrocarbon fuels. He has coauthored about 80 peer-reviewed papers, and these articles have been cited more than 12320 times by SCI. He has won the award of “Highly Cited Researchers” by Thomson Reuters and/or Clarivate Analytics for the third consecutive year in 2016-2020. In addition, he obtains 2 first prize in natural science of Hubei Province in 2016 and 2018, and the 17th young teacher award by Fok Ying Tong education foundation. He joined the editorial board of Chinese Journal of Catalysis in 2020.
  • Supported by:
    National Natural Science Foundation of China(51672099);National Natural Science Foundation of China(52073263);Sichuan Science and Technology Program(2019JDRC0027);Sichuan Science and Technology Program(2019YFG0222);Fundamental Research Funds for the Central Universities(2017-QR-25)

摘要:

作为影响光催化反应的关键因素, 光催化剂的活性位点数量直接决定了光催化活性. 传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性. 为了增加g-C3N4的活性位点数量, 研究人员采取了各种策略, 包括杂原子掺杂、表面改性和空位工程. 其中, 表面改性是增加催化剂活性位点的有效策略之一. 氰基具有很强的吸电子能力, 可在光催化反应中作为活性位点. 然而, 关于氰基作为CO2光还原活性位点的研究并不多, 特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚. 构建多孔结构是暴露催化剂活性位点的有效措施之一. 多孔结构可以有效改善纳米片的团聚, 促进活性位点暴露, 增大反应物与活性位点间的接触机会; 并且相互连接的多孔网络可形成独特的传输通道, 进一步促进载流子迁移.
本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5). 氰基由于具有良好的吸电子特性, 促进了局部载流子分离, 并充当了光催化反应的活性位点. 受益于活性位点的影响, MCN-0.5表现出显著增强的光催化CO2还原活性. 在不添加牺牲剂和助催化剂的条件下, MCN-0.5样品上CO和CH4产率达到13.7和0.6 μmol·h‒1·g‒1, 分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍. 通过盐酸处理MCN-0.5除去氰基, 并没有破坏样品的形貌结构, 但催化剂的光催化活性显著降低,证实了氰基活性位点的作用. 光还原Pt纳米颗粒的实验结果表明, 与对照样品相比, 氰基修饰的样品上还原的Pt纳米颗粒更多, 进一步证实了引入氰基为光还原反应提供了更多活性位点. CO2等温吸附测试结果表明, MCN-0.5对CO2的吸附能力不如对照样品, 间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离. 瞬态荧光光谱、光电化学表征结果表明, 氰基修饰增强了载流子迁移和分离能力. 根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理. 以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性, 这证明了氰基改性增强g-C3N4活性策略的通用性. 本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.

关键词: 石墨相氮化碳, 氰基修饰, 活性位点, 电子受体, 多孔结构, 光催化还原CO2

Abstract:

The active site amount of photocatalysts, being the key factors in photocatalytic reactions, directly affects the photocatalytic performance of the photocatalyst. Pristine graphitic carbon nitride (g-C3N4) exhibits moderate photocatalytic activity due to insufficient active sites. In this study, cyano-modified porous g-C3N4 nanosheets (MCN-0.5) were synthesized through molecular self-assembly and alkali-assisted strategies. The cyano group acted as the active site of the photocatalytic reaction, because the good electron-withdrawing property of the cyano group promoted carrier separation. Benefiting from the effect of the active sites, MCN-0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation. Notably, the photocatalytic activity of MCN-0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid (HCl) treatment, further verifying the role of cyano groups as active sites. The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction. Furthermore, the controlled experiments showed that g-C3N4 grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity, which proved the versatility of the strategy for enhancing the activity of g-C3N4 via cyano group modification. In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano-modified g-C3N4. This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts.

Key words: Graphitic carbon nitride, Cyano group modification, Active sites, Electron acceptor, Porous structure, Photocatalytic CO2 reduction