催化学报 ›› 2023, Vol. 53: 52-71.DOI: 10.1016/S1872-2067(23)64543-7
申珅玉a, 郭庆丰b, 武甜甜a,*(), 苏亚琼a,*(
)
收稿日期:
2023-07-29
接受日期:
2023-09-20
出版日期:
2023-10-18
发布日期:
2023-10-25
通讯作者:
*电子信箱: 基金资助:
Shenyu Shena, Qingfeng Guob, Tiantian Wua,*(), Yaqiong Sua,*(
)
Received:
2023-07-29
Accepted:
2023-09-20
Online:
2023-10-18
Published:
2023-10-25
Contact:
*E-mail: About author:
Tiantian Wu received her Ph.D. from Technical University of Denmark in 2019, and then worked as a postdoc in Technical University of Denmark from 2019 to 2021. She also had an external stay at Prof. Núria López’s group in Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology. Now she is working as an assistant professor in Xi’an Jiaotong University. Her research area is computational catalysis in metal-air batteries, lithium-ion batteries, and electrocatalysis in solid fuel cells (SOECs).Supported by:
摘要:
自工业革命以来, CO2的过量排放导致了环境污染和气候变化, 对人类可持续发展造成了极大的威胁. 由可再生电力驱动的电催化CO2还原反应(CO2RR)技术可在较温和的条件下将CO2转化为高附加价值的燃料和化学品, 因而是一种有效的CO2转换和利用的方法. 尽管电催化CO2RR已经取得了较大的研究进展, 但其工业化应用依旧面临着许多挑战: CO2RR的反应路径涉及多步电子-质子转移, 其产物组分较复杂(包括C1到C3的产物), 并且反应过程伴随着析氢反应(HER)副反应发生. 此外, 不同电催化剂的使用以及实验操作条件均对CO2RR影响较大, 导致目前CO2RR催化剂性能尚不够理想, 因而难以获得实际应用. 为进一步开发性能良好的电催化CO2RR体系, 以及认识实际反应过程中催化体系真正的活性位点, 理解电催化剂表面结构演变机制至关重要.
本文综述了CO2RR条件下非均相催化界面的动态演变行为. 首先, 本文讨论了催化界面动态演变的原理和分类. 催化剂结构在实时工况下会发生演变, 导致活性位点难以确定, 因此需要明确催化界面动态演变的机制. 动态演变行为主要分为催化剂表面形态演变和性质演变: 表面形态演变主要指原子重排或迁移, 该过程由热力学和动力学驱动; 性质演变主要是化学态发生改变, 它是催化剂表面性质和外界环境共同作用的结果. 目前, 大多数的研究都围绕着催化剂表面和次表面活性位点展开, 所讨论的影响催化剂性质的因素主要包括化学组成、晶面和表面形态等. 除催化剂内在性质外, 还详细讨论了影响动态演变的外界环境因素, 包括外加电位、温度、电解质以及杂质等. 外加电位是影响催化界面的主要因素, 电解质中的阴阳离子也对反应选择性有较大的影响. 为了更好地认识反应过程中催化剂表面的活性位点, 总结了光谱表征、X射线表征、微观表征等技术在研究催化界面动态演变行为中的应用. 特别地, 脉冲CO2电解技术可以调节催化界面的动态演变行为, 进而更好地调控反应的活性和选择性. 在此基础上, 理论模拟方法如密度泛函从头算和机器学习等方法, 可以模拟环境条件驱动下的催化剂表面重构, 为动态演变机制提供新的认识.
本文还总结了当前研究电催化还原CO2反应界面的动态演变行为所面临的问题和挑战, 并展望了CO2RR未来的研究方向.
申珅玉, 郭庆丰, 武甜甜, 苏亚琼. 电催化CO2还原过程中非均相界面的动态行为[J]. 催化学报, 2023, 53: 52-71.
Shenyu Shen, Qingfeng Guo, Tiantian Wu, Yaqiong Su. The dynamic behaviors of heterogeneous interfaces in electrocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2023, 53: 52-71.
Fig. 1. (a) HAADF-STEM images and EDS elemental mapping of intermixed AgCu catalysts after the CO2RR has proceeded for 0, 0.5, 1, 3, 6, and 24 h. Scale bars in the top row, 50 nm; bottom row, 20 nm. Reprinted with permission from Ref. [25]. Copyright 2023, American Chemical Society. (b) Structural evolution of CuSiOx and CuO before and after the CO2RR at -1.4 V vs. RHE for 2 h. (c,d) Faradaic efficiencies (FEs) of the CO2RR products on CuO and CuSiOx at different potentials. Reprinted with permission from Ref. [27]. Copyright 2023, American Chemical Society. (e) TEM image after the introduction of Cu2O NPs of size 20 nm. (f) HRTEM image of Cu-based NPs after the CO2RR has proceeded for 10 h. (g) FEs of CO2RR products on fragmented Cu-based NP/C at different potentials. Reprinted with permission from Ref. [29]. Copyright 2019, American Chemical Society.
Fig. 2. (a) XANES spectra of Cu(pc) in CO2-saturated 0.1 mol L-1 KHCO3 as a function of the applied potentials. (b) EXAFS spectra of Cu(pc) thin-film electrode. Reprinted with permission from Ref. [31]. Copyright 2021, American Chemical Society. (c) EXAFS spectra of as-prepared Zn NPs. (d) EXAFS spectra of Zn NPs during CO2RR. Reprinted with permission from Ref. [38]. Copyright 2018, American Chemical Society. (e,f) The trend of methanol production and coordination numbers of In-O and In-In changes with the variation of TOS (time on stream). Reprinted with permission from Ref. [40]. Copyright 2019, American Chemical Society.
Fig. 3. High-resolution transmission electron microscopy (HR-TEM) images of ET-H (+1.2 VRHE) (a) and ET-L (+0.8 VRHE) (b) catalysts. ET refers to electrochemical treatment. The grain boundaries are highlighted with red lines. Reprinted with permission from Ref. [50]. Copyright 2022, American Chemical Society. (c) Grand free energy profiles of CO2 activation on Cu(100) through the SEPT and CPET mechanisms. Reprinted with permission from Ref. [54]. Copyright 2023, American Chemical Society. (d) Electrochemical scanning tunneling microscopy (EC-STM) images of polycrystalline copper surface at -0.9 V in 0.1 mol L-1 KOH. Reprinted with permission from Ref. [52]. Copyright 2014, American Chemical Society.
Fig. 4. Faradaic efficiency (in dark circles) and partial current density (in light squares) during CO2RR at different reaction temperatures in 0.1 mol L-1 KHCO3 at ?1.1 V vs. RHE for C2H4 (a) and H2 (b). (c) Carbon efficiency towards CO at ?1.1 V vs. RHE. SEM micrographs after CO2RR at -1.1 V vs. RHE at 25 °C (d), 48 °C (e) and 70 °C (f). Reprinted with permission from Ref. [61]. Copyright 2023, American Chemical Society.
Fig. 5. (a) CO2RR in 0.2 mol L-1 phosphate buffers with pH values of 1 and 7 on Cu(111) and Cu(100). Reprinted with permission from Ref. [82]. Copyright 2013, Elsevier. (b) Surface Pourbaix diagram under global thermodynamic equilibrium. The color bar represents the H coverage (in ML). (c) Root-mean-square deviation (RMSD) of the top-layer Cu positions during equilibrated 10 ps Born-Oppenheimer molecular dynamics (BOMD) simulations of the unrestructured surface with 0-, 1/6-, and 1/3-ML H coverage. (d) Key snapshots during an equilibrated 10 ps BOMD simulation of the 12 H state with an unrestructured initial configuration (the shifting row is highlighted by green or blue, before or after the shift). Reprinted with permission from Ref. [84]. Copyright 2022, American Chemical Society. (e) STEM-HAADF image of the surface of a Cu2O nanocube. The different atomic structures are labeled by regions I and II. Reprinted with permission from Ref. [41]. Copyright 2022, Elsevier. Time- and potential-dependent sequences of EC-STM images of Cu(111) at a pH of 13 (f) and 11 (g). Reprinted with permission from Ref. [86]. Copyright 2021, American Chemical Society.
Fig. 6. (a) The activity of CO generation in the presence of different cations. Reprinted with permission from Ref. [87]. Copyright 2021, American Chemical Society. (b,c) CV of the platinum ultramicroelectrode (Pt-UME) after CO2RR on gold and silver electrodes. Reprinted with permission from Ref. [88]. Copyright 2021, Springer Nature. (d-f) The partial current densities of the main products on Cu(100) in the presence of different cations. Reprinted with permission from Ref. [90]. Copyright 2017, American Chemical Society. (g-i) SEM images of electropolished Cu (EP-Cu), oxidized Cu (Ox-Cu), and Re-Cu-I. (j) FE of C2 products on Re-Cu-I, Re-Cu-Br, Re-Cu-Cl, and EP-Cu at different potentials. Reprinted with permission from Ref. [94]. Copyright 2020, Royal Society of Chemistry.
Fig. 7. (a) Pd-induced surface restructuring strategy. Reprinted with permission from Ref. [98]. Copyright 2017, John Wiley and Sons. (b,c) FEs of CO2RR products of pure CO2 and CO2/O2 at different applied potentials. Reprinted with permission from Ref. [107]. Copyright 2016, Elsevier. (d) BF-TEM image of Cu catalyst after electrolysis in CO2 + SO2 experiment. Reprinted with permission from Ref. [108]. Copyright 2019, American Chemical Society.
Fig. 8. (a) IR spectra at different applied potentials on Ag catalyst in CO2-saturated 0.1 mol L-1 KCl electrolyte. Reprinted with permission from Ref. [9]. Copyright 2017, American Chemical Society. (b,c) In situ SERS of Cu surface in CO2-saturated 0.1 mol L-1 KHCO3. Reprinted with permission from Ref. [121]. Copyright 2021, John Wiley and Sons. (d) A schematic of the developed operando Raman measurement system. (e) Operando Raman spectra of the peroxo O-O band evolution. Reprinted with permission from Ref. [122]. Copyright 2022, American Chemical Society.
Fig. 9. (a) In situ In K-edge XANES of InZr_7.1 at different temperatures in CO2 or reaction atmosphere. (b) The corresponding Fourier transformed EXAFS spectra of InZr_7.1. Reprinted with permission from Ref. [125]. Copyright 2019, American Chemical Society. (c,d) In situ XPS spectra of the Cu 2p3/2 and Zn 2p3/2 core level regions before and after 1 h of CO2RR. Reprinted with permission from Ref. [126]. Copyright 2019, American Chemical Society. (e) XRD patterns of intermixed AgCu particles after CO2RR. Reprinted with permission from Ref. [25]. Copyright 2023, American Chemical Society.
Fig. 10. (a) STEM-HAADF images of the morphology of Cu2O nanocubes at different stages. Reprinted with permission from Ref. [41]. Copyright 2022, Elsevier. (b,c) In situ EC-AFM images of electropolished Cu(100) surface at -0.5 and -1.0 V vs. RHE. Reprinted with permission from Ref. [57]. Copyright 2020, John Wiley and Sons. (d-f) AFM images that depict the surface morphologies of EP-Cu, E-ID-Cu and W-ID-Cu. Reprinted with permission from Ref. [129]. Copyright 2023, John Wiley and Sons.
Fig. 11. (a) FEs of CO2RR products on Cu electrode at constant potential and pulsed potential with different cathodic intervals (tc) and anodic intervals (ta). Reprinted with permission from Ref. [120]. Copyright 2018, John Wiley and Sons. (b) FEs of CO2RR products on Cu electrodes at constant potential and pulsed potential in a 0.1 mol L-1 KHCO3 electrolyte and a 0.1 mol L-1 KCl electrolyte. Reprinted with permission from Ref. [138]. Copyright 2020, John Wiley and Sons. (c-e) AFM images of Cu(100) electrode at constant potential and pulsed potential for different anodic potentials. Reprinted with permission from Ref. [131]. Copyright 2020, Springer Nature.
Fig. 12. (a,b) Grand potential interface energies of Cu surfaces with the adsorption of H and CO. (c) pH- and potential-dependent Wulff-shapes of Cu nanoparticles with different adsorbates covered. Reprinted with permission from Ref. [53]. Copyright 2018, Springer Nature. Dynamic evolution of the Cu-N bond length with adsorption of one H atom (d) and two H atoms (e). (f) Dynamic evolution of the bond length in the process of Cu atom aggregation. Reprinted with permission from Ref. [153]. Copyright 2022, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[9] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[14] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[15] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||