催化学报 ›› 2022, Vol. 43 ›› Issue (2): 421-432.DOI: 10.1016/S1872-2067(21)63849-4

• 论文 • 上一篇    下一篇

利用掺杂诱导的金属-N活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能

于晓慧a, 苏海伟c, 邹建平b,$(), 刘芹芹c,*(), 王乐乐c, 唐华c,d,#()   

  1. a江苏大学先进制造与现代装备技术工程研究院, 江苏镇江 212013
    b江西省持久性污染物控制与资源循环利用重点实验室, 江西南昌 330063
    c江苏大学材料科学与工程学院, 江苏镇江 212013
    d青岛大学环境科学与工程学院, 山东青岛 266071
  • 收稿日期:2021-03-24 接受日期:2021-03-24 出版日期:2022-02-18 发布日期:2021-06-08
  • 通讯作者: 邹建平,刘芹芹,唐华
  • 基金资助:
    国家自然科学基金(21975110);国家自然科学基金(21972058)

Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance

Xiaohui Yua, Haiwei Suc, Jianping Zoub,$(), Qinqin Liuc,*(), Lele Wangc, Hua Tangc,d,#()   

  1. aEngineering Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    bKey Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
    cSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    dSchool of Environmental Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2021-03-24 Accepted:2021-03-24 Online:2022-02-18 Published:2021-06-08
  • Contact: Jianping Zou, Qinqin Liu, Hua Tang
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(21975110);This work was supported by the National Natural Science Foundation of China(21972058)

摘要:

由于石墨相氮化碳(g-C3N4)的独特结构和性质, 特别是其具有合适的能带结构位置及可调控的晶体结构, 被广泛应用于光催化产氢反应中. 然而, 纯相氮化碳具有较快的光生电荷复合速率, 这使其光催化产氢活性较低. 目前, 利用非金属或过渡金属原子掺杂可有效提升电荷分离速度, 从而提高光催化产氢活性. 相比于非金属掺杂, g-C3N4的三嗪环中的吡啶氮可提供丰富的孤电子对, 可将过渡金属离子留在框架结构中以形成金属-N键, 在催化反应中充当活性位点.
本文采用简单的热聚合方法将过渡金属原子(M = Fe, Co和Ni)掺杂在g-C3N4中, 从而实现了g-C3N4的原子级结构的调控. 结合X射线衍射仪技术、傅里叶变换红外吸收光谱仪、X射线光电子能谱分析、扫描电子显微镜和透射电子显微镜分析, 结果表明, 金属原子被成功引入g-C3N4中, 且不破坏其原有结构, 掺杂后的g-C3N4仍呈现片状形貌. 结合XPS和DFT计算结果发现, 掺杂的过渡金属原子会进入三嗪环中与周围N配位形成金属-N键; 活性H原子会优先吸附于金属-N键上来参与水分解反应, 证实了金属-N键为光催化产氢反应中的活性位点, 并且过渡金属原子的掺杂有利于光催化反应进行. g-C3N4中的过渡金属原子掺杂导致活性H原子吸附能降低, 使得光催化产氢反应更容易进行. 此外, 对光电流、阻抗、瞬态荧光光谱、固体紫外可见光谱和电子顺磁共振等测试结果表明, 光生电子可沿着金属-N键迁移, 从而加速了光生载流子的分离; 过渡金属原子掺杂可减小g-C3N4的带隙并提升导带位置, 从而促进了对光的吸收, 提高还原能力. 与纯相的g-C3N4相比, 掺杂过渡金属原子的g-C3N4表现出更高的光催化产氢活性, 其中, Co掺杂的样品呈现出最高的产氢活性. 综上, 本文研究结果表明过渡金属原子的掺杂可增强g-C3N4的光催化产氢性能, 从而有助于开发出高效的光催化剂.

关键词: 石墨相氮化碳, 光催化产氢, 金属-N活性位点, 过渡金属掺杂, 带隙调控

Abstract:

Durable and inexpensive graphitic carbon nitride (g-C3N4) demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction (HER). To further improve its activity, g-C3N4 was subjected to atomic-level structural engineering by doping with transition metals (M = Fe, Co, or Ni), which simultaneously induced the formation of metal-N active sites in the g-C3N4 framework and modulated the bandgap of g-C3N4. Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C3N4 acted as an “electron transfer bridge”, where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges, and the optimized bandgap of g-C3N4 afforded stronger reduction ability and wider light absorption. As a result, doping with either Fe, Co, or Ni had a positive effect on the HER activity, where Co-doped g-C3N4 exhibited the highest performance. The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.

Key words: g-C3N4, Photocatalytic H2 generation, Metal-N active sites, Transition metal doping, Band gap engineering