催化学报 ›› 2022, Vol. 43 ›› Issue (2): 403-409.DOI: 10.1016/S1872-2067(21)63844-5

• 论文 • 上一篇    下一篇

一维硫化镉/二维二硫化钨纳米异质结用于超高活性光催化制氢

丁超, 赵呈孝, 成石, 杨小飞*()   

  1. 南京林业大学理学院, 江苏南京 210037
  • 收稿日期:2021-02-28 接受日期:2021-04-18 出版日期:2022-02-18 发布日期:2021-05-24
  • 通讯作者: 杨小飞
  • 基金资助:
    国家自然科学基金(21975129);南京林业大学杰出青年科学基金(JC2019002);江苏高校优势学科建设工程项目(PAPD)

Ultrahigh photocatalytic hydrogen evolution performance of coupled 1D CdS/1T-phase dominated 2D WS2 nanoheterojunctions

Chao Ding, Chengxiao Zhao, Shi Cheng, Xiaofei Yang*()   

  1. College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2021-02-28 Accepted:2021-04-18 Online:2022-02-18 Published:2021-05-24
  • Contact: Xiaofei Yang
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(21975129);Science Fund for Distinguished Young Scholars(JC2019002);Nanjing Forestry University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘要:

基于半导体的太阳能光催化分解水制氢技术是一种环境友好、潜力巨大的绿色氢能制造方案. 常用的块体半导体材料一般具有较弱的可见光吸收、快速的光生载流子复合以及较低的光催化制氢效率等缺点. 因此, 设计开发具有宽光谱光吸收、稳定性好、催化活性高的太阳能光催化材料是促进光催化制氢发展的关键, 也是该研究方向的挑战之一. 硫化镉纳米材料是一种常见的光催化材料, 虽然表现出较好的光催化产氢性能, 但是其载流子复合速率较快, 可见光区响应较弱, 且光腐蚀现象严重.
本文可控制备了一种富含1T金属相的二硫化钨纳米片, 并将其作为助催化剂与一维硫化镉纳米棒进行有效耦合, 成功构筑一维硫化镉/二维二硫化钨混合维度纳米异质结, 高效提升了硫化镉半导体材料的光解水制氢活性和稳定性.
高分辨透射电镜和元素分布结果表明, 一维硫化镉纳米棒和二维二硫化钨纳米片高效耦合形成混合维度异质结; X射线光电子能谱结果表明, 异质结中的Cd 3d5/2和Cd 3d3/2相比于纯硫化镉向高能量区移动了0.6 eV, 而W元素峰相比于纯硫化钨向低能量区移动了0.4 eV, 进一步表明一维硫化镉纳米棒和二维二硫化钨纳米片间存在较强的界面耦合作用. 光电流响应、阻抗谱等光电化学测试以及原位电子顺磁共振谱的结果表明, 一维硫化镉/二维二硫化钨混合维度纳米异质结具有比纯相硫化镉纳米棒更高的光生载流子浓度和更快的载流子分离传输速率. 可见光激发的光催化制氢性能测试结果表明, 100 mg硫化镉纳米棒与10 mg二硫化钨纳米片组装形成的纳米异质结材料(WC-10)表现出较高的光催化析氢活性和光稳定性. 在可见光照射下, 肉眼可见光催化体系中快速产生大量气泡, 计算出的光催化产氢速率接近70 mmol·g -1·h -1.

关键词: 硫化镉, 二硫化钨, 光催化产氢, 异质结, 界面耦合

Abstract:

Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel. Bulk semiconductors generally suffer from certain limitations, such as poor visible-light utilization, rapid recombination of charge carriers, and low catalytic capability. The key challenge is to develop visible-light-driven heterojunction photocatalysts that are stable and highly active during the water splitting process. Here, we demonstrate the integration of one-dimensional (1D) CdS nanorods with two-dimensional (2D) 1T-phase dominated WS2 nanosheets for constructing mixed-dimensional heterojunctions for the photocatalytic hydrogen evolution reaction (HER). The resulting 1D CdS/2D WS2 nanoheterojunction exhibited an ultrahigh hydrogen-evolution activity of ~70 mmol•g -1•h -1 that was visible to the naked eye, as well as long-term stability under visible light illumination. The results reveal that the synergy of hybrid nanoarchitectures and intimate interfacial contact between the 1D CdS nanorods and 1T-phase dominated 2D WS2 nanosheets facilitates charge carrier transport, which is beneficial for achieving superior hydrogen evolution.

Key words: Cadmium sulfide, Tungsten disulfide, Photocatalytic hydrogen evolution, Heterojunction, Interfacial coupling