催化学报 ›› 2022, Vol. 43 ›› Issue (2): 526-535.DOI: 10.1016/S1872-2067(21)63872-X

• 论文 • 上一篇    下一篇

具有增强电荷转移驱动的磺酸基功能化g-C3N4光催化剂的设计合成及应用

张敏a, 李云锋a,*(), 常薇a, 朱炜a,#(), 张洛红a, 金仁喜b, 邢艳c   

  1. a西安工程大学环境与化学工程学院, 西安市纺织化工助剂重点实验室, 陕西西安 710000, 中国
    b圣母大学化学与生物分子工程系, 印第安纳, 美国
    c东北师范大学化学学院, 吉林省先进能源材料重点实验室, 吉林长春 130024, 中国
  • 收稿日期:2021-05-08 接受日期:2021-06-25 出版日期:2022-02-18 发布日期:2021-07-02
  • 通讯作者: 李云锋,朱炜
  • 基金资助:
    国家自然科学基金(22008185);国家自然科学基金(21872023)

Negative inductive effect enhances charge transfer driving in sulfonic acid functionalized graphitic carbon nitride with efficient visible-light photocatalytic performance

Min Zhanga, Yunfeng Lia,*(), Wei Changa, Wei Zhua,#(), Luohong Zhanga, Renxi Jinb, Yan Xingc   

  1. aXi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, College of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710000, Shaanxi, China
    bDepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA
    cJilin Provincial Key Laboratory of Advanced Energy Materials, Department of Chemistry, Northeast Normal University, Changchun 130024, Jilin, China
  • Received:2021-05-08 Accepted:2021-06-25 Online:2022-02-18 Published:2021-07-02
  • Contact: Yunfeng Li, Wei Zhu
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(22008185);This work was supported by the National Natural Science Foundation of China(21872023)

摘要:

随着全球环境问题日益严重以及能源需求的不断增长, 人们对高效环境修复与能源转换技术的需求日益增强. 以半导体材料为光催化剂, 可将可再生的太阳能转化为化学能, 有望成为解决人类面临的能源和环境问题的有效途径. 其中, 开发高效稳定的光催化剂是该技术得以实际应用的关键. 近几十年, 研究人员开发出多种半导体材料并应用于光催化研究. 其中, 具有可见光响应的有机非金属光催化剂石墨相氮化碳(g-C3N4)因其稳定的分子结构, 较小的禁带宽度(~2.7 eV)以及合适的能带结构而备受关注. 然而, 与大多数半导体光催化剂相似, 由于传统g-C3N4上的光生电子和空穴极易复合, 表面催化活性位点较少, 可见光响应范围较窄, 使得其催化效率不高.
基于g-C3N4独特的有机分子结构, 通过引入功能化的特定基团以优化g-C3N4的电子能带结构, 促进载流子传输, 拓展可见光响应范围, 是提高其光催化效率的有效途径. 已有研究表明, 在各种功能化官能团中, 具有强电负性的含氧基团对g-C3N4的Melon单元优化是非常有效的. 因此, 本文通过g-C3N4与氨基磺酸间的简单固相热反应成功合成了磺酸基功能化的g-C3N4纳米片(SACN), 并实现了同步增强的相互作用. 根据固体强酸特性, 氨基磺酸可以在热处理的辅助下对g-C3N4进行酸刻蚀, 从而增加其比表面积以及表面催化活性位点. 更重要的是, 理论计算与实验表征结果表明, 磺酸基团的吸电子诱导效应所产生的电荷驱动力可极大改善g-C3N4的电荷转移动力学, 有效抑制了它们的再结合. 此外, 吸电子诱导效应还可促进g-C3N4的局域电子再分布, 进而降低g-C3N4的导带电位, 增强光诱导电子的还原能力. 光催化性能测试结果表明, SACN-400样品(前驱体中氨基磺酸加入量为400 mg)在光催化分解水制备氢气以及光降解传统污染物领域展现出较好的性能, 其在入射光波长为420 ± 15 nm时的产氢表观量子效率为11.03%. 综上, 本文为设计合成具有较高产氢性能以及污染物降解效率的石墨相氮化碳基光催化剂提供了一种简便有效的策略.

关键词: 光催化, 石墨相氮化碳, 吸电子诱导效应, 氨基磺酸, 电荷转移

Abstract:

Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C3N4. Herein, sulfonic acid group-functionalized g-C3N4 (SACN) was synthesized and then synchronously strengthened by a facile-solid-state thermal reaction of g-C3N4 and sulfamic acid. As a solid strong acid, sulfamic acid can be used to achieve acid etching on the surface of g-C3N4 with the assistance of thermal treatment, leading to an enlarged specific surface area and increased surface catalytic reaction sites. More importantly, our experiments and density functional theory calculations indicate that the driving force generated by the negative inductive effect of sulfonic acid groups significantly improves the charge transfer dynamics and effectively inhibits their recombination. Moreover, the negative inductive effect can induce charge redistribution, which reduces the conduction band potential of g-C3N4 to enhance the reduction ability of photo-induced electrons. As a result, the SACN-400 sample showed excellent photocatalytic performance in H2 generation with an apparent quantum efficiency of 11.03% at 420 ± 15 nm, as well as an efficient photodegradation rate for organic pollutants.

Key words: Photocatalysis, g-C3N4, Negative inductive effect, Sulfamic acid, Charge transfer