催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1488-1499.DOI: 10.1016/S1872-2067(20)63778-0

• 论文 • 上一篇    下一篇

Mo的引入方式对CeO2脱硝性能的影响

李露露a,b,d,, 葛成艳e,, 季稼伟a, 谭伟a, 王鑫a, 魏小倩a, 郭凯a, 汤常金a,b,f,#(), 董林b,c,*()   

  1. a南京大学化学化工学院, 江苏南京210093
    b南京大学现代分析中心, 江苏省机动车尾气污染控制重点实验室, 江苏南京210093
    c南京大学环境学院, 江苏南京210093
    d江苏科技大学环境与化学工程学院, 江苏镇江212003
    e盐城工学院化学化工学院, 江苏盐城224051
    f南京师范大学环境学院, 江苏南京210093
  • 收稿日期:2020-11-24 接受日期:2021-01-25 出版日期:2021-09-18 发布日期:2021-05-16
  • 通讯作者: 汤常金,董林
  • 作者简介:第一联系人:

    共同第一作者.

  • 基金资助:
    国家自然科学基金(21806077);国家自然科学基金(21773106);国家自然科学基金(21707066);国家自然科学基金(21607122)

Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2

Lulu Lia,b,d,, Chengyan Gee,, Jiawei Jia, Wei Tana, Xin Wanga, Xiaoqian Weia, Kai Guoa, Changjin Tanga,b,f,#(), Lin Dongb,c,*()   

  1. aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
    bJiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, Jiangsu, China
    cSchool of Environment, Nanjing University, Nanjing 210093, Jiangsu, China
    dSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
    eSchool of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
    fSchool of Environment, Nanjing Normal University, Nanjing 210093, Jiangsu, China
  • Received:2020-11-24 Accepted:2021-01-25 Online:2021-09-18 Published:2021-05-16
  • Contact: Changjin Tang,Lin Dong
  • About author:# E-mail: tangcj@njnu.edu.cn
    * E-mail: donglin@nju.edu.cn;
    First author contact:

    These authors contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(21806077);National Natural Science Foundation of China(21773106);National Natural Science Foundation of China(21707066);National Natural Science Foundation of China(21607122)

摘要:

固定源排放的氮氧化物(NOx)导致了严重的环境污染问题, NH3选择性催化还原(NH3-SCR)被认为是目前控制NOx排放的最有效技术, 已广泛应用于电力行业的烟气排放治理. 然而, 我国非电行业的NOx减排仍然面临着重大挑战, 因为其排放的废气温度通常低于300 ºC, 且含有一定量的SO2, 传统的钒基SCR催化剂因活性温度(300~400 ºC)较高而无法有效发挥作用. 因此, 亟待开发新型的高效低温SCR催化剂.
铈基催化剂由于氧化铈(CeO2)的优异储氧能力(OSC)和良好的氧化还原能力而显示出较好的低温(80~300 ºC)脱硝性能, 如Mn-Ce, W-Ce, Ta-Ce, Cu-Ce和Nb-Ce等. 但这些铈基催化剂易被烟气中的SO2毒化而导致催化活性降低. 因此, 提高铈基SCR催化剂抗硫中毒能力是其产业化应用的关键. 已有研究发现, 通过构筑结构保护层或添加另一种金属来保护活性组分是提高SCR催化剂抗硫性能的一种可行策略. 氧化钼(MoO3)通常被用做传统V2O5/TiO2催化剂的促进剂以提高其水热稳定性和表面酸性. 研究表明, 在V/Ti催化剂中引入钼物种不仅可以提高其SCR活性, 而且提高了V/Ti催化剂的抗SO2性能, 这是由于VMo/Ti表面较少的V‒O‒V键削弱了对SO2的氧化作用. Tang等开发了一种Fe2O3/MoO3纳米片催化剂, 显示出比纯Fe2O3更好的抗SO2能力, 主要是由于层状结构的MoO3能阻止NH4+在硫酸氢铵中的沉积. 目前关于Mo的引入方式即催化剂的制备方法对铈基催化剂物化性能和NH3-SCR催化性能(特别是抗SO2能力)的影响的研究还比较少.
本文分别采用浸渍法和沉淀法在CeO2中引入钼物种, 制备了Mo-CeO2和MoCe-cp催化剂来探究制备方法对MoCe催化剂的脱硝性能及抗SO2中毒能力的影响. 结果表明, 引入Mo可以显著地提高CeO2的低温脱硝性能, 其中Mo-CeO2催化剂在150°C即可达到80%以上的脱硝效率, 同时抗SO2中毒性能也得到了显著提高. 对催化剂结构、氧化还原能力、表面酸度和反应物分子的吸附脱附性质进行了表征, 并与MoCe催化剂脱硝性能和抗硫性能相关联. 结果表明, Mo-CeO2和MoCe-cp催化剂的物理化学性质和脱硝性能有明显区别. 首先, Mo-CeO2中的钼物种主要存在于CeO2表面, 而MoCe-cp中的钼物种主要存在于CeO2体相, 其为Mo-CeO2表面带来大量的Brönsted酸位并抑制了硝酸盐的吸附, 促使NH3-SCR反应按照Eley-Rideal机理进行, 进而表现出优于MoCe-cp的低温活性. 其次, Mo-CeO2表面更多的Mo物种抑制了SO2的吸附, 从而使Mo-CeO2表现出更好的抗SO2性能. 本文为具有实际应用前景的铈基NH3-SCR催化剂的设计提供了参考.

关键词: 表面修饰, MoO3-CeO2, 氨选择催化还原, Br?nsted酸位, 抗SO2中毒

Abstract:

Cerium-based catalysts are very attractive for the catalytic abatement of nitrogen oxides (NOx) emitted from stationary sources. However, the main challenge is still achieving satisfactory catalytic activity in the low-temperature range and tolerance to SO2 poisoning. In the present work, two series of Mo-modified CeO2 catalysts were respectively obtained through a wet impregnation method (Mo-CeO2) and a co-precipitation method (MoCe-cp), and the roles of the Mo species were systematically investigated. Activity tests showed that the Mo-CeO2 catalyst displayed much higher NO conversion at low temperature and anti-SO2 ability than MoCe-cp. The optimal Mo-CeO2 catalyst displayed over 80% NO elimination efficiency even at 150 °C and remarkable SO2 resistance at 250 °C (nearly no activity loss after 40 h test). The characterization results indicated that the introduced Mo species were highly dispersed on the Mo-CeO2 catalyst surface, thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species. These factors synergistically promote the selective catalytic reduction (SCR) reaction in accordance with the Eley-Rideal (E-R) reaction path on the Mo-CeO2 catalyst. Additionally, the molybdenum surface could protect CeO2 from SO2 poisoning; thus, the reducibility of the Mo-CeO2 catalyst declined slightly to an adequate level after sulfation. The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium-based SCR catalysts with superior SO2 durability.

Key words: Surface modification, MoO3-CeO2, NH3-SCR, Br?nsted acid sites, SO2 resistance