催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1648-1658.DOI: 10.1016/S1872-2067(21)63805-6

• 论文 • 上一篇    下一篇

原位制备氧化钛/氮掺杂石墨烯空心球光催化剂及其光催化CO2还原性能研究

王立博a,b, 朱必成c, 程蓓a, 张建军a, 张留洋a, 余家国a,b,d()   

  1. a武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070
    b先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室), 广东佛山528200
    c中国地质大学材料与化学学院, 太阳燃料实验室, 湖北武汉430074
    d郑州大学材料科学与工程学院, 河南郑州450001
  • 收稿日期:2021-02-06 接受日期:2021-03-16 出版日期:2021-10-18 发布日期:2021-06-20
  • 通讯作者: 余家国
  • 作者简介:*电话: (027)87871029; 传真: (027)87879468; 电子信箱:yujiaguo93@whut.edu.cn
  • 基金资助:
    国家自然科学基金(21905219);国家自然科学基金(51872220);国家自然科学基金(51932007);国家自然科学基金(51961135303);国家自然科学基金(21871217);国家自然科学基金(U1905215);国家自然科学基金(U1705251);中央高校基本科研业务费专项资金资助(WUT: 2019IVB050);先进能源科技广东实验室仙湖实验室创新研究基金(XHD2020-001)

In-situ preparation of TiO2/N-doped graphene hollow sphere photocatalyst with enhanced photocatalytic CO2 reduction performance

Libo Wanga,b, Bicheng Zhuc, Bei Chenga, Jianjun Zhanga, Liuyang Zhanga, Jiaguo Yua,b,d()   

  1. aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
    bFoshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
    cLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
    dSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2021-02-06 Accepted:2021-03-16 Online:2021-10-18 Published:2021-06-20
  • Contact: Jiaguo Yu
  • About author:Jiaguo Yu received his BS and MS in chemistry from Central China Normal University and Xi’an Jiaotong University, respectively; his PhD in Materials Science from Wuhan University of Technology (WUT). In 2000, he became a Professor at WUT. His research interests include semiconductor photocatalysis, photocatalytic hydrogen production, CO2 reduction, dye-sensitized and perovskite Solar cells, indoor air purification and adsorption, supercapacitor, electrocatalysis and so on. He is Thomson Reuters "Hottest Researcher" of 2012. His name is also in the lists of 2014−2020 Highly Cited Researchers from Clarivate Analytics (Thomson Reuters) in Materials Science, Chemistry and Engineering. He is Foreign Member of Academia Europaea (The Academy of Europe) (2020), Foreign Fellow of the European Academy of Sciences (2020) and Fellow of the Royal Society of Chemistry (2015). He was appointed as the Associate Editor of Chin. J. Catal. in 2020.
  • Supported by:
    National Natural Science Foundation of China(21905219);National Natural Science Foundation of China(51872220);National Natural Science Foundation of China(51932007);National Natural Science Foundation of China(51961135303);National Natural Science Foundation of China(21871217);National Natural Science Foundation of China(U1905215);National Natural Science Foundation of China(U1705251);Fundamental Research Funds for the Central Universities(WUT: 2019IVB050);Innovative Research Funds of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHD2020-001)

摘要:

利用光催化技术将二氧化碳转化为化学燃料是缓解温室效应以及能源危机的理想途径之一. 因此, 开发高效的光催化剂是当务之急. 氧化钛由于具有优异的物理化学稳定性、成本低廉、无毒性以及环境友好等优点, 近年来被广泛关注. 此外, 空心球结构光催化剂具有短的载流子扩散距离、良好的光散射性以及较大的比表面积等优点, 从而成为光催化二氧化碳还原最有潜力的候选材料. 但纯的氧化钛空心球由于较快的光生载流子复合速率从而导致低的光催化效率. 因此, 为了应对这一挑战, 我们尝试在氧化钛空心球表面负载助催化剂用以促进光生载流子的分离, 从而提高光催化二氧化碳还原转换效率. 在各种助催化剂中, 贵金属被证明是有效的. 然而, 高成本以及稀缺性限制了贵金属的广泛应用. 因此, 有必要设计成本低廉的助催化剂替代品.
石墨烯以其优异的导电性、较大的功函数以及来源丰富而备受关注. 当石墨烯与n型半导体光催化剂结合在一起时, 能够显著促进光生电子从半导体光催化剂向石墨烯的定向迁移, 从而有效地抑制光生电子与空穴的复合. 当石墨烯中掺杂氮元素时, 石墨烯骨架中的电子密度会进一步提高, 同时, 氮原子中的孤对电子更加有利于石墨烯骨架中的电子传输. 此外, 氮掺杂石墨烯中不同的氮位点(吡啶氮、吡咯氮和石墨氮)作为路易斯碱位点, 能够用以二氧化碳分子的吸附以及活化. 然而, 迄今为止, 最常用的制备半导体/氮掺杂石墨烯纳米复合光催化剂的方法是在氮掺杂石墨烯表面生长半导体光催化剂. 所制备的光催化剂与氮掺杂石墨烯之间界面接触有限, 不利于光生载流子的快速传递与分离. 此外, 助催化剂和光催化剂之间建立高质量的界面接触可以有效地抑制光生电子与空穴的复合. 因此, 有必要绕开传统制备方法的弊端, 从而设计与光催化剂之间具有大的接触面积和紧密的界面接触以及具有丰富活性位点的高质量氮掺杂石墨烯助催化剂.
本文提出了一种新的策略, 以吡啶为氮掺杂石墨烯的前驱体, 通过化学气相沉积方法在氧化钛空心球表面原位生长超薄氮掺杂石墨烯层(1~2层). 此外, 在高温状态下, 吡啶分子脱氢生成具有优异扩散性质的脱氢吡啶自由基气相分子. 随着反应的进行, 氧化钛表面的每个纳米颗粒基元表面都能够与吡啶分子充分接触, 从而保障两者之间大面积以及紧密的界面接触. 光催化二氧化碳还原性能测试结果表明, 优化后的氧化钛/氮掺杂石墨烯空心球纳米复合材料的二氧化碳光催化总转化率(一氧化碳、甲醇和甲烷的总产率)为18.11 μmol g-1 h-1, 是空白氧化钛空心球的4.6倍和商业P25的10.7倍. 高分辨透射电子显微镜、X射线光电子能谱以及拉曼光谱结果表明, 成功构建了氧化钛与氮掺杂石墨烯之间紧密接触的界面. 同时, 氮掺杂石墨烯的引入能够显著增强复合光催化剂的表面光热效应以及氧化钛与氮掺杂石墨烯界面肖特基势垒的形成均有助于促进光催化二氧化碳还原反应的进行. 因此, 本文为石墨烯基光助催化剂的原位构建提供了一种行之有效的策略.

关键词: 超薄氮掺杂石墨烯层, 化学气相沉积, 紧密界面接触, 光催化CO2还原, 吡啶氮位点

Abstract:

Photocatalytic CO2 conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers. It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact. Herein, we develop a novel strategy to in-situ grow ultrathin N-doped graphene (NG) layer on TiO2 hollow spheres (HS) with large area and intimate interfacial contact via a chemical vapor deposition (CVD). The optimized TiO2/NG HS nanocomposite achieves total CO2 conversion rates (the sum yield of CO, CH3OH and CH4) of 18.11 μmol g-1 h-1, which is about 4.6 times higher than blank TiO2 HS. Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport, realizing enhanced photocatalytic CO2 reduction performance. In addition, this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO2 conversion.

Key words: Ultrathin N-doped graphene layer, Chemical vapor deposition, Intimate interfacial contact, Photocatalytic CO2 reduction, Pyridinic N site