催化学报 ›› 2021, Vol. 42 ›› Issue (1): 131-140.DOI: 10.1016/S1872-2067(20)63623-3

• 论文 • 上一篇    下一篇

三维分等级花状Cd0.8Zn0.2S的结构调控及其光催化CO2还原

程蕾a, 张岱南a, 廖宇龙a, 范佳杰b, 向全军a,*()   

  1. a电子科学与工程学院, 电子科技大学电子薄膜与集成器件国家重点实验室, 四川成都610054
    b郑州大学材料科学与工程学院, 河南郑州450002
  • 收稿日期:2020-03-06 接受日期:2020-04-24 出版日期:2021-01-18 发布日期:2021-01-18
  • 通讯作者: 向全军
  • 基金资助:
    国家自然科学基金(51672099);国家自然科学基金(21403079);四川省科技计划资助(2019JDRC0027);中央高校基金(2017-QR-25)

Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction

Lei Chenga, Dainan Zhanga, Yulong Liaoa, Jiajie Fanb, Quanjun Xianga,*()   

  1. aState Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering,University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
    bSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, China
  • Received:2020-03-06 Accepted:2020-04-24 Online:2021-01-18 Published:2021-01-18
  • Contact: Quanjun Xiang
  • About author:*Tel/Fax: +86-28-83207063; E-mail: xiangqj@uestc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51672099);National Natural Science Foundation of China(21403079);Sichuan Science and Technology Program(2019JDRC0027);Fundamental Research Funds for the Central Universities(2017-QR-25)

摘要:

近年来, 光催化CO2还原被视为一种既能解决能源短缺又能减少温室气体, 改善人类生存环境的绿色新型技术. 然而, 由于CO2气体的相对稳定性, 构建高催化活性和高选择性的催化体系仍然面临着巨大挑战. 锌硫镉固溶体作为一种廉价的固溶类材料, 具有吸光范围适宜、化学性质稳定以及能带结构可调控等特点, 在光催化还原CO2的方面表现出巨大的潜力. 本文发展了一种简单的原位自组装法合成三维分等级花状结构的Cd0.8Zn0.2S, 主要包括Cd2+和Zn2+离子在含硫氛围下自组装成核状前体, 然后以柠檬酸钠作为形貌诱导剂进一步组装生长, 同时控制Cd2+/Zn2+摩尔比和反应时间以实现三维分等级花状Cd0.8Zn0.2S的合成. 结果表明, 三维分等级花状结构的Cd0.8Zn0.2S在光催化还原CO2的过程中表现出优异的催化活性和稳定性. 其中, 在光照3 h后, CO产量达到41.4 μmol g-1, 大约是相同光照条件下Cd0.8Zn0.2S纳米颗粒的三倍(14.7 μmol g-1). 此外, 三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中展现出对光催化产物CO的较高选择性(89.9%), 其中在没有任何牺牲剂或共催化剂作用下的TON为39.6. 太赫兹时域光谱(THz-TDS)表明, 这种三维分等级花状结构的Cd0.8Zn0.2S相较于Cd0.8Zn0.2S纳米颗粒更有利于对光的吸收, 从而提高对光的有效利用率. 原位漫反射傅立叶变化红外光谱表征分析揭示了三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中表面吸附物质以及光催化还原中间体的存在及转化. 通过实验数据和理论机理预测表明, 该种三维分等级花状结构的Cd0.8Zn0.2S具有较高的电流密度和较好的载流子传输能力. 基于这种三维的花状结构, 使得Cd0.8Zn0.2S具有较大的比表面积和吸附位点, 进一步提升体系的CO2吸附性能和光生电子的转移效率, 从而有效提高光催化CO2还原的活性.

关键词: 花状Cd0.8Zn0.2S, 自组装生长, 光催化CO2还原, 高选择性, 可见光

Abstract:

The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect. However, it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes. In this work, three-dimensional hierarchical Cd0.8Zn0.2S flowers (C8Z2S-F) with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director. The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2, generating CO up to 41.4 μmol g-1 under visible-light illumination for 3 h; this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles (C8Z2S-NP) (14.7 μmol g-1). Particularly, a comparably high selectivity of 89.9% for the conversion of CO2 to CO, with a turnover number of 39.6, was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent. Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F. The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process. Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability, thus providing a highly effective photocatalytic reduction of CO2.

Key words: Cd0.8Zn0.2S flowers, Self-assembly growth, Photocatalytic CO2 reduction, High selectivity, Visible-light irradiation