催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1331-1340.DOI: 10.1016/S1872-2067(21)64005-6

• 论文 • 上一篇    下一篇

2D ZnMOF/BiVO4 S型异质结的构建及其可见光催化还原CO2性能

赵振龙a,b, 边辑a(), 赵丽娜a, 吴红君a, 徐帅a, 孙磊a, 李志君a, 张紫晴a(), 井立强a()   

  1. a黑龙江大学化学化工与材料学院, 功能无机材料化学教育部重点实验室, 催化技术国际联合研究中心实验室, 黑龙江哈尔滨150080
    b齐齐哈尔大学化学与化学工程学院, 黑龙江齐齐哈尔161006
  • 收稿日期:2021-09-14 接受日期:2021-11-04 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: 边辑,张紫晴,井立强
  • 基金资助:
    国家自然科学基金(U1805255);国家自然科学基金(22105066);国家自然科学基金(U2102211);黑龙江省省属本科高校基本科研业务费科研创新平台(135409403)

Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation

Zhenlong Zhaoa,b, Ji Biana(), Lina Zhaoa, Hongjun Wua, Shuai Xua, Lei Suna, Zhijun Lia, Ziqing Zhanga(), Liqiang Jinga()   

  1. aKey Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin 150080, Heilongjiang, China
    bCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Received:2021-09-14 Accepted:2021-11-04 Online:2022-05-18 Published:2022-03-23
  • Contact: Ji Bian, Ziqing Zhang, Liqiang Jing
  • Supported by:
    National Natural Science Foundation of China(U1805255);National Natural Science Foundation of China(22105066);National Natural Science Foundation of China(U2102211);Research Project of Education Ministry of Heilongjiang Province of China(135409403)

摘要:

利用光催化技术将CO2转换为燃料或高附加值的化学品, 既实现了碳的循环利用, 同时也缓解了能源危机和环境污染问题. 一个完整的光催化还原CO2反应包含空穴氧化水和电子还原CO2两个半反应, 这要求半导体的导带底能级和价带顶能级同时满足CO2还原和水氧化的热力学反应电位. 而单一的半导体很难在充分吸收可见光的同时满足上述两个半反应的热力学电势. S型异质结由一个具有较深价带的氧化型半导体和一个具有较负导带的还原型半导体组成, 在光照条件下, 氧化型半导体的电子和还原型半导体的空穴相复合, 氧化型半导体的空穴和还原型半导体的电子实现空间分离. 因此, 选择能级位置匹配的两个窄带隙半导体构筑S型异质结, 既可以充分吸收、利用可见光, 又保留了强氧化还原能力的空穴和电子以分别高效诱发水氧化和还原CO2两个半反应.

钒酸铋(BiVO4)的价带位置较正, 具有良好的析氧性能, 是理想的窄带隙氧化型半导体材料. 其中, 二维结构的BiVO4纳米片可有效缩短光生电荷扩散到表面的距离, 具有较大的接触面积且表面含有丰富的羟基, 非常利于与还原型半导体形成紧密的界面. g-C3N4由于其导带能级较负, 光生电子还原能力强, 是经典的还原型半导体光催化材料. 但其吸光范围与BiVO4大部分重叠且缺少表面催化活性位点.

金属有机骨架(MOFs)是一类由金属团簇和有机配体联结而成的晶态多孔材料, 具有比表面积大、孔隙率高、能带结构可调等特点. 二维MOFs材料的电子易于扩散到表面且含有丰富的表面金属位点, 因而在光催化领域受到广泛关注. 二维卟啉锌金属有机骨架(Zn-MOF)以卟啉锌为配体, 不仅具有MOFs的结构优势, 同时保留了金属卟啉宽可见光响应的特点. 更为重要的是, Zn-MOF具有较高的LUMO能级, 特别是二维结构暴露了丰富的金属节点, 将更有利于CO2的吸附与活化. 因此, 以Zn-MOF作为还原型半导体, 有望与二维BiVO4纳米片构建维度匹配的、宽光谱响应的且富含表面催化活性中心的高效S型异质结光催化剂.

本文利用羟基诱导组装的方法制备了2D/2D Zn-MOF/BiVO4 S型异质结光催化剂. 最佳样品的光催化还原CO2至CO的产率分别为BiVO4纳米片 (厚度约5 nm)和BiVO4纳米盘(厚度约15 nm)的6倍和22倍, 为传统g-C3N4/BiVO4异质结的2倍. 电化学还原测试、电子顺磁共振波谱及原位傅里叶变换红外光谱等研究表明, BiVO4和Zn-MOF之间增强的S型电荷转移、均匀分散在Zn-MOF中的金属节点Zn2(COO)4对CO2的有效活化以及体系的宽可见光响应是光催化还原CO2性能提高的关键. 本文为构筑宽光谱响应的含有卟啉基MOFs的高效S型异质结光催化体系提供了新思路.

关键词: BiVO4纳米片, 二维锌卟啉基金属有机骨架修饰, S型异质结, 可见光催化, CO2转化

Abstract:

The construction of S-scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel. However, there are still considerable challenges with regard to efficient charge transfer, the abundance of catalytic sites, and extended light absorption. Herein, an S-scheme heterojunction of 2D/2D zinc porphyrin-based metal-organic frameworks/BiVO4 nanosheets (Zn-MOF/BVON) was fabricated for efficient photocatalytic CO2 conversion. The optimal one shows a 22-fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake (ca. 15 nm), and even exhibits ~2-time improvement than the traditional g-C3N4/BiVO4 heterojunction. The excellent photoactivities are ascribed to the strengthened S-scheme charge transfer and separation, promoted CO2 activation by the well-dispersed metal nodes Zn2(COO)4 in the Zn-MOF, and extended visible light response range based on the results of the electrochemical reduction, electron paramagnetic resonance, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The dimension-matched Zn-MOF/BVON S-scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion. This study offers a facile strategy for constructing S-scheme heterojunctions involving porphyrin-based MOFs for solar fuel production.

Key words: BiVO4 nanosheet, 2D zinc porphyrin-based MOFs, modification, S-scheme heterojunction, Visible light catalysis, CO2 conversion