催化学报 ›› 2023, Vol. 50: 1-5.DOI: 10.1016/S1872-2067(23)64472-9

• 评论 •    下一篇

地外光催化CO2转化

刘敬祥a,b, 张超a, Ferdi Karadasc, 熊宇杰a,*()   

  1. a中国科学技术大学合肥微尺度物质科学国家研究中心, 化学与材料科学学院, 安徽合肥 230026, 中国
    b马来西亚莫纳什大学工程学院化工学科多学科先进工程平台, 马来西亚
    c毕尔肯特大学化学系和国家纳米技术研究中心, 土耳其
  • 收稿日期:2023-04-03 接受日期:2023-06-12 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子信箱: yjxiong@ustc.edu.cn (熊宇杰).
  • 基金资助:
    国家重点研发计划(2020YFA0710302);国家重点研发计划(2022YFE0126500);国家自然科学基金(52261135635);国家自然科学基金(22150610467);国家自然科学基金(22232003);土耳其科学和技术研究委员会(122N434)

Photocatalytic CO2 conversion: Beyond the earth

Jingxiang Lowa,b, Chao Zhanga, Ferdi Karadasc, Yujie Xionga,*()   

  1. aHefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
    bMultidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
    cDepartment of Chemistry and National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
  • Received:2023-04-03 Accepted:2023-06-12 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: yjxiong@ustc.edu.cn (Y. Xiong).
  • About author:Yujie Xiong (University of Science and technology of China) received his Ph.D. in inorganic chemistry in 2004 from the University of Science and Technology of China (USTC). From 2004 to 2009, he worked as a postdoctoral fellow at the University of Washington in Seattle and as a research associate at the University of Illinois at Urbana-Champaign. He was the principal scientist at the Washington University in St. Louis in 2009-2011. He joined the USTC in 2011, and currently is the Chair Professor of Chemistry. His research centers on solar-driven artificial carbon cycle.
  • Supported by:
    National Key R&D Program of China(2020YFA0710302);National Key R&D Program of China(2022YFE0126500);National Natural Science Foundation of China(52261135635);National Natural Science Foundation of China(22150610467);National Natural Science Foundation of China(22232003);TUBITAK(122N434)

摘要:

随着人类社会对CO2排放引起的气候变化问题愈发关注, 光催化CO2转化因其能模拟自然界中的光合作用受到广泛研究, 以帮助修复自然界中已被破坏的碳循环. 光催化CO2转化可以减少大气中的CO2浓度, 并合成具有高价值的碳氢化合物燃料. 近年来, 随着地外空间发现了丰富储量的CO2和水, 科学家提出了在地外也可以进行光催化CO2转化反应, 进而在地外建立人工碳循环, 为太空任务提供推进剂和生命保障. 本文围绕光催化CO2转化反应在地外空间应用的可行性进行探讨, 阐述光催化CO2转化的基本过程, 包括CO2分子的吸附与活化、半导体的激发、光生载流子的迁移和分离以及反应中间物种的稳定. 同时, 阐述了光催化CO2转化在地外应用过程中可能存在的问题, 具体包括光催化剂的来源问题、地外微重力问题、地外辐射问题以及温度与温差问题.

随着近几年各国深空探测项目的提出与部署, 在地外空间探究光催化CO2转化建立人工碳循环的可行性已成为一项紧迫的任务. 因此, 本文展望了地外光催化CO2转化的未来发展方向, 具体包括(1)进一步提升光催化CO2转化性能与选择性, (2)探究地外条件与因素对光催化CO2转化过程的影响与(3)将光催化CO2转化反应与其他技术匹配以拓宽相关的应用.

关键词: 光催化, CO2转化, 碳循环, 原位资源化利用, 碳氢燃料

Abstract:

The issue of climate change attributed to CO2 emissions has led to increased attention towards the study and development of artificial photosynthesis through photocatalytic CO2 conversion to reconstruct the broken carbon cycle in nature. Photocatalytic CO2 conversion can simultaneously reduce the CO2 concentration in the atmosphere and produce valuable hydrocarbon fuels. With the recent discovery of abundant reserves of CO2 and water at extraterrestrial sites, it has been proposed that photocatalytic CO2 conversion can also be implemented at extraterrestrial sites to build up an artificial carbon cycle for providing propellants and life support for space missions. This comment presents our perspectives on the development of photocatalytic CO2 conversion beyond Earth, with a focus on its general principles and potential challenges that may arise at extraterrestrial sites. Finally, a brief overview of the future research directions in this field is presented.

Key words: Photocatalysis, CO2 conversion, Carbon cycle, In situ resource utilization, Hydrocarbon fuels