催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1667-1676.DOI: 10.1016/S1872-2067(21)63824-X

• 论文 • 上一篇    下一篇

“反应环境磷酸化”加速g-C3N4/碳纸气-液-固三相界面光催化CO2还原

张庆贺, 夏阳, 曹少文()   

  1. 武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070
  • 收稿日期:2021-03-03 接受日期:2021-04-08 出版日期:2021-10-18 发布日期:2021-06-20
  • 通讯作者: 曹少文
  • 作者简介:*电子信箱:swcao@whut.edu.cn
  • 基金资助:
    国家自然科学基金(51922081);国家自然科学基金(21773179)

“Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces

Qinghe Zhang, Yang Xia, Shaowen Cao()   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2021-03-03 Accepted:2021-04-08 Online:2021-10-18 Published:2021-06-20
  • Contact: Shaowen Cao
  • About author:Professor Shaowen Cao received his B.S. in Geochemistry in 2005 from the University of Science and Technology of China, and his Ph.D. in Materials Chemistry & Physics in 2010 from the Shanghai Institute of Ceramics, Chinese Academy of Sciences. He then worked as a Research Fellow at the School of Materials Science and Engineering, Nanyang Technological University until Feb. 2014. He is now a Professor at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. From Mar. 2018 to Feb. 2020, he was a Visiting Scientist at Max Planck Institute of Colloids and Interfaces. His current research interests include the design and fabrication of photocatalytic materials for energy and environmental applications. He is the author or co-author of more than 100 peer-reviewed scientific papers published on Chem. Soc. Rev., Joule, Adv. Mater., Angew. Chem. Int. Ed., Chin. J. Catal. etc., with over 12000 citations, an H-index 57 and 19 ESI highly cited papers. He is also one of the “Highly Cited Researchers” from 2018 to 2020 awarded by Clarivate Analytics. He joined the Editorial Board of Chin. J. Catal. as a young member in 2017.
  • Supported by:
    National Natural Science Foundation of China(51922081);National Natural Science Foundation of China(21773179)

摘要:

采用悬浮体系进行光催化CO2还原反应是将半导体光催化剂均匀分散到液相中, 但液相中有限的CO2溶解度和扩散速率, 极大限制了光催化还原CO2反应的活性和选择性. 为了提高悬浮体系的CO2还原活性, 研究人员进行了一系列研究, 包括开发新材料、形貌调控、复合光催化剂和用CO2饱和溶液代替纯水等. 但这些改进策略对CO2还原活性的提升是有限的, 仍然难以达到实际应用的要求. 近年来, 关于催化剂的设计和制备方面取得较大进步, 但仅有极少数的研究致力于构建有效的光催化体系. 实际上, 光催化体系的构建与催化剂的设计和制备同样重要, 因为理想的光催化CO2还原体系会使CO2反应气体与光催化剂的相互作用最大化, 从而提高CO2还原反应的效率. 近年来, 可以建立气-液-固三相接触界面的疏水基底材料被广泛研究并应用于许多领域, 包括燃料电池、光催化、电催化和有机合成等. 这种独特的界面体系可以使反应气体到达反应界面并吸附在催化剂表面, 从而提高了许多涉及气体的多相反应的反应速率. 在传统的固-液两相体系中, 气体传输通常是限制反应速率的因素, 疏水基底的引入则可以很好地解决这一问题. 氮化碳(g-C3N4)作为一种聚合物半导体, 具有可见光响应能力, 并且光生电子具有足够的还原能力满足还原CO2的需求, 这使得它逐渐成为光催化CO2还原领域的明星材料.
本文把g-C3N4作为光催化剂负载到疏水基底表面, 构建气-液-固三相光催化体系并用于研究光催化CO2还原反应活性. 以三聚氰胺为前驱体, 采用化学气相沉积法在亲、疏水碳纤维纸表面生长g-C3N4光催化剂来构建新型气-液-固三相光催化体系, 该体系可以增强CO2的传输和吸附能力, 并形成气-液-固(CO2-H2O-光催化剂)三相反应界面, 使得光催化CO2还原反应的活性和选择性显著提高. 借助于疏水表面, 气态物质可以连续不断地输送到光催化剂表面, 而不仅依赖于溶解在液相中的微量CO2气体. 因此, 催化剂表面可以保持有较高的CO2和较低的H+浓度, 在抑制析氢反应的同时增强CO2还原反应. 研究结果表明, 与亲水样品相比, 疏水样品的CO2还原效率显著提高并明显抑制了析氢反应, 其光催化CO2还原反应的选择性达到78.6%.
另外, 氧化半反应通常是光催化CO2还原反应的限制因素, 会导致光生空穴的大量聚集, 阻碍光生载流子的分离与传递, 进而影响整体的光催化转化率. 研究结果表明, 使用磷酸盐溶液代替纯水进行光催化CO2还原反应性能, 可以大幅提高气-液-固三相体系的光催化活性, 其总体光催化CO2还原速率达到了1175.5 μmol h-1 m-2, 是纯水环境下的8.8倍, CO2还原选择性为93.8%. 光催化剂表面的光生空穴可以直接与溶液中的磷酸根离子发生反应, 使磷酸盐反应生成过磷酸盐, 以代替较难发生的产氧半反应.

关键词: 光催化CO2还原, 疏水基底, 气-液-固三相界面, 传质, 磷酸盐

Abstract:

The limited CO2 content in aqueous solution and low adsorption amount of CO2 on catalyst surface lead to poor photocatalytic CO2 reduction activity and selectivity. Herein, the design and fabrication of a novel photocatalytic architecture is reported, accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper. The as-obtained samples with a hydrophobic surface exhibit excellent CO2 transport and adsorption ability, as well as the building of triphase air-liquid-solid (CO2-H2O-catalyst) joint interfaces, eventually resulting in the inhibition of H2 evolution and great promotion of CO2 reduction with a selectivity of 78.6%. The addition of phosphate to reaction environment makes further improvement of CO2 photoreduction into carbon fuels with a selectivity of 93.8% and an apparent quantum yield of 0.4%. This work provides new insight for constructing efficient photocatalytic architecture of CO2 photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.

Key words: Photocatalytic CO2 reduction, Hydrophobic surface, Air-liquid-solid triphase interfaces, Mass transport, Phosphorylation