催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1677-1688.DOI: 10.1016/S1872-2067(21)63791-9

• 论文 • 上一篇    下一篇

结合动力学和热力学研究PtPd修饰Zn0.5Cd0.5S纳米棒体系的高效光催化产氢机理

张临河a, 张福东b, 薛华庆b, 高健峰a, 彭涌b, 宋卫余c, 戈磊a()   

  1. a中国石油大学(北京)新能源与材料学院, 重质油加工国家重点实验室, 北京102249
    b中国石油天然气股份有限公司勘探开发研究院, 北京100083
    c中国石油大学(北京)理学院, 应用化学系, 北京102249
  • 收稿日期:2021-02-06 接受日期:2021-03-01 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 戈磊
  • 作者简介:*电话/传真: (010)89734836; 电子信箱:gelei08@sina.com
  • 基金资助:
    国家重点研发计划(2019YFC1907602);中国石油勘探开发研究院(2018YCQ05);国家自然科学基金(51572295);国家自然科学基金(21273285);国家自然科学基金(21003157)

Mechanism investigation of PtPd decorated Zn0.5Cd0.5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics

Linhe Zhanga, Fudong Zhangb, Huaqing Xueb, Jianfeng Gaoa, Yong Pengb, Weiyu Songc, Lei Gea()   

  1. aState Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
    bDepartment of New Energy, Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
    cDepartment of Applied Chemistry, College of Science, China University of Petroleum Beijing, Beijing 102249, China
  • Received:2021-02-06 Accepted:2021-03-01 Online:2021-06-20 Published:2021-06-20
  • Contact: Lei Ge
  • About author:Professor Lei Ge received his B.S. in 2002 and Ph.D degree in 2006 from Tianjin University. At the end of 2006, he joined the faculty of Department of Materials Science and Engineering, China University of Petroleum Beijing. From 2011 to 2012, he did postdoctoral research at The University of California at Riverside. His research interests currently focus on new materials and energy photocatalysis, electrocatalysis with emphasis on design of new catalysts and control of morphology, microstructure and reaction mechanism for hydrogen production, environmental pollutants degradation, etc. Some of his recent progresses include the novel approaches to design cocatalysts decorated photocatalysts with controllable microstructures, the synthesis of novel hollow structured materials with superior catalytic performance, preparation of metal and nonmetal ions doped electrocatalysts derived from MOFs with high overwall water splitting performance. He has coauthored more than 100 peer-reviewed papers and 10 patents. He joined the Editorial Board of Chin. J Catal. as a young member in 2020.
  • Supported by:
    National Key R&D Program of China(2019YFC1907602);Research Institute of Petroleum Exploration & Development, PetroChina(2018YCQ05);National Natural Science Foundation of China(51572295);National Natural Science Foundation of China(21273285);National Natural Science Foundation of China(21003157)

摘要:

硫化镉锌(Zn0.5Cd0.5S)纳米棒因其制备方法简单以及具有良好的光催化活性等优点, 在光催化领域得到广泛的研究和应用. 单一Zn0.5Cd0.5S存在光生电子与空穴易复合以及光腐蚀等问题, 采用助催化剂修饰将有助于电荷分离与迁移, 从而提高其光催化性能. 本文将PtPd合金作为助催化剂修饰Zn0.5Cd0.5S纳米棒光催化材料, 以提高可见光照射下的产氢速率, 并对合金助催化剂提高催化活性的机理进行了深入研究.
通过简单水热法合成Zn0.5Cd0.5S, 采用化学还原沉积法制备PtPd/Zn0.5Cd0.5S复合光催化材料. XRD结果表明, 成功合成了Zn0.5Cd0.5S催化剂. TEM结果表明, Zn0.5Cd0.5S呈纳米棒状, 测量得到PtPd合金的(111)晶面条纹间距为0.23 nm, 说明合金成功负载到硫化镉锌上. XPS结果表明, PtPd/Zn0.5Cd0.5S复合样品中Pt和Pd元素的峰值较Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S均发生了偏移, Pt和Pd元素化学结合环境发生改变, 进一步证实合成了PtPd合金.
光催化产氢实验结果表明, 当Zn0.5Cd0.5S负载PtPd合金以后, 光催化产氢速率大幅提升, 其中负载量为1.0 wt%的PtPd/Zn0.5Cd0.5S复合光催化材料的产氢速率最快, 达到9.689 mmol·g-1·h-1, 分别是纯Zn0.5Cd0.5S, Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S的9.5, 3.6和1.7倍. 为了探究PtPd合金性能优于Pt的原因, 本文结合化学反应热力学(DFT理论计算)和动力学(光致发光光谱、光电流响应、电化学阻抗谱和表面光电压谱)手段进行了详细研究. 结果表明, PtPd二元贵金属合金具有与Pt相近的氢活性物种吸附能和d带中心, 可以大大加速电荷转移, 促进电荷分离, 降低H2生成的活化能. 虽然Pt在热力学上有利于光催化产氢, 但从催化反应动力学结果可知, PtPd合金在动力学上更有利于产氢, 这与光催化产氢结果一致, 即PtPd/Zn0.5Cd0.5S复合材料催化活性高于Pt/Zn0.5Cd0.5S. 综上, 本文研究结果可为其他金属合金助催化剂的研究提供新思路.

关键词: PtPd合金, Zn0.5Cd0.5S纳米棒, 光催化产氢, DFT计算

Abstract:

Different components of PtPd bimetallic cocatalysts modified Zn0.5Cd0.5S nanorods have already been designed and prepared in this study. The obtained hybrid photocatalysts were tested and characterized by XPS, ICP-OES and UV-Vis spectra, TEM and EDX tools. Such characterizations can prove the formation of PtPd bimetallic alloy particles in hybrid catalysts. Under visible light illumination, an outstanding hydrogen producing rate of 9.689 mmol·g-1·h-1 and a high AQY efficiency up to 10.43% at 420 nm are achieved in this work. In addition, thermodynamics (DFT calculations) and kinetics (Photoluminescence emission, photocurrent responses, electrochemical impedance spectroscopy and surface photovoltage spectra) investigations illustrate that PtPd bimetallic alloy has similar catalytic thermodynamic properties to Pt, which can greatly boost the charge separation and speed up the charge transfer, and decrease the activation energy of H2 generation. Notably, the calculation data suggests that Pt is thermodynamically favorable, while PtPd alloy is kinetically beneficial to H2 production, which can be ascribed to the higher activity of PtPd/Zn0.5Cd0.5S than Pt/Zn0.5Cd0.5S. This work can propose a fresh perspective for preparing high efficiency hybrid photocatalysts.

Key words: PtPd alloy, Zn0.5Cd0.5S nanorods, Photocatalytic hydrogen evolution, DFT calculation