催化学报 ›› 2021, Vol. 42 ›› Issue (12): 2216-2224.DOI: 10.1016/S1872-2067(21)63842-1

• 论文 • 上一篇    下一篇

铜镍双金属催化剂上糠醛水相选择性偶联加氢-重排制环戊酮

张树静a,b,c, 马红a,c,#(), 孙玉霞a,b,c, 刘鑫a,b,c, 张美云a,b,c, 罗杨a,b,c, 高进a,c, 徐杰a,c,*()   

  1. a中国科学院大连化学物理研究所催化基础国家重点实验室, 大连116023
    b中国科学院大学, 北京100049
    c中国科学院洁净能源创新研究院, 辽宁大连116023
  • 收稿日期:2021-04-02 接受日期:2021-04-02 出版日期:2021-12-18 发布日期:2021-05-19
  • 通讯作者: 马红,徐杰
  • 基金资助:
    国家自然科学基金(21790331);国家自然科学基金(21872138);国家自然科学基金(21690084);中国科学院战略性先导科技专项(XDA21030400);中国科学院战略性先导科技专项(XDB17020300)

Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water

Shujing Zhanga,b,c, Hong Maa,c,#(), Yuxia Suna,b,c, Xin Liua,b,c, Meiyun Zhanga,b,c, Yang Luoa,b,c, Jin Gaoa,c, Jie Xua,c,*()   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cDalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2021-04-02 Accepted:2021-04-02 Online:2021-12-18 Published:2021-05-19
  • Contact: Hong Ma,Jie Xu
  • About author:# Tel/Fax: +86-411-84379278; E-mail: mahong@dicp.ac.cn
    * Tel/Fax: +86-411-84379245; E-mail: xujie@dicp.ac.cn;
  • Supported by:
    National Natural Science Foundation of China(21790331);National Natural Science Foundation of China(21872138);National Natural Science Foundation of China(21690084);Strategic Priority Research Program of Chinese Academy of Sciences(XDA21030400);Strategic Priority Research Program of Chinese Academy of Sciences(XDB17020300)

摘要:

生物质资源高效催化转化制备高附加值化学品具有重要的科学意义与工业应用潜力. 生物质基糠醛催化加氢-重排制备环戊酮是一条具有吸引力的“非石油”制备路线, 但该过程面临副产物多、环戊酮选择性难以提高等难题, 除糠醛外, 中间物种也很容易发生多种聚合副反应. 因此, 探索中间物种聚合副反应的条件和作用机制, 是提高目标产物环戊酮的选择性和收率的关键.

本文制备了CuNi/Al-MCM-41双金属纳米过渡金属催化剂, 通过精确调控介质水的pH值和原料浓度, 实现了糠醛加氢-重排耦合制备环戊酮的高选择性和高收率. 在2.0 MPa H2, 160oC和近中性条件下反应5 h, 糠醛的转化率为99.0%, 环戊酮的选择性达到97.7%; 其催化性能远远高于单组份铜或镍催化剂以及其它分子筛载体(MCM-41, SBA-15, HY, ZSM-5)负载的CuNi双金属催化剂. 研究结果表明, 高度分散在MCM-41上的少量Al组分, 有利于Cu, Ni金属组分相互均匀分散. XPS结果表明, 双金属催化剂CuNi/Al-MCM-41中Cu和Ni具有明显的电子结合能偏移, 表明Ni向Cu转移电子; 耦合催化反应性能的提高可能与CuNi双金属协同作用及电荷转移效应有关. 傅立叶变换红外光谱和质谱结果表明, 聚合副反应对反应体系的pH值敏感. 在酸性条件下, 中间产物糠醇在反应体系中容易发生聚合, 导致糠醇重排生成3-羟基环戊烯酮的选择性降低; 在碱性条件下, 3-羟基环戊烯酮转化为4-羟基-环戊-2-烯酮后, 容易进一步发生聚合副反应. 在近中性条件下可有效避免中间体的聚合, 提高加氢重排生成环戊酮的选择性. 此外,降低原料糠醛的初始浓度,有利于降低聚合等副反应,能够进一步提高目标产物环戊酮的收率.

本文为研制双金属纳米过渡金属催化剂以及利用双金属协同作用等方面提供新的启示, 为解决生物质原料转化过程中普遍存在的聚合副反应和碳平衡降低等问题提供了新思路

关键词: 偶联催化, 双金属协同效应, 环戊酮, 糠醛, 加氢-重排

Abstract:

Tandem catalysis for the hydrogenation rearrangement of furfural (FA) provides an attractive solution for manufacturing cyclopentanone (CPO) from renewable biomass resources. The CuNi/Al-MCM-41 catalyst was synthesized and afforded excellent catalytic performance with 99.0% conversion and 97.7% selectivity to CPO in a near-neutral solution under 2.0 MPa H2 at 160 °C for 5 h, much higher than those on other molecular sieve supports including MCM-41, SBA-15, HY, and ZSM-5. A small amount of Al highly dispersed in MCM-41 plays an anchoring role and ensures the formation of highly dispersed CuNi bimetallic nanoparticles (NPs). The remarkably improved catalytic performance may be attributed to the bimetallic synergistic and charge transfer effects. In addition, the initial FA concentration and the aqueous system pH required precise control to minimize polymerization and achieve high selectivity of CPO. Fourier transform infrared spectroscopy and mass spectra results indicated that polymerization was sensitive to pH values. Under acidic conditions, FA and intermediate furfuryl alcohol polymerize, while the intermediate 4-hydroxy-2-cyclopentenone mainly polymerizes under alkaline conditions, blocking the cascade of multiple reactions. Therefore, near-neutral conditions are most suitable for minimizing the impact of polymerization. This study provides a useful solution for the current universal problems of polymerization side reactions and low carbon balance for biomass conversion.

Key words: Tandem catalysis, Bimetallic synergic effect, Cyclopentanone, Furfural, Hydrogenation-rearrangement