催化学报 ›› 2023, Vol. 44: 96-110.DOI: 10.1016/S1872-2067(22)64154-8
李诗浩a,c, 石家福b,c,*(), 刘书松b, 李文萍a,c, 陈裕b, 单慧婷a,d, 程雨晴a,c, 吴洪a,c,*(
), 姜忠义a,c,d,*(
)
收稿日期:
2022-05-28
接受日期:
2022-07-14
出版日期:
2022-12-10
发布日期:
2022-12-08
通讯作者:
石家福,吴洪,姜忠义
基金资助:
Shihao Lia,c, Jiafu Shib,c,*(), Shusong Liub, Wenping Lia,c, Yu Chenb, Huiting Shana,d, Yuqing Chenga,c, Hong Wua,c,*(
), Zhongyi Jianga,c,d,*(
)
Received:
2022-05-28
Accepted:
2022-07-14
Online:
2022-12-10
Published:
2022-12-08
Contact:
Jiafu Shi, Hong Wu, Zhongyi Jiang
About author:
Jiafu Shi (School of Environmental Science & Engineering, Tianjin University) obtained his PhD in Chemical Technology from Tianjin University (China) in 2013. After graduation, he joined the faculty of Tianjin University, and started working at the School of Environmental Science and Engineering. He was a visiting scholar of University of California at Berkeley with Professor Phillip B. Messersmith from 2016 to 2017. He is the winner of National Science Fund for Excellent Young Scholars in China. His research interest encompasses enzyme-catalyzed biomanufacturing processes. He has co-authored over 100 peer-reviewed papers, including in Chemical Society Reviews, Journal of the American Chemical Society, ACS Catalysis, Advanced Functional Materials, Chem, Angewandte Chemie International Edition, Joule, etc.Supported by:
摘要:
酶-光偶联催化系统(EPCS)集成了半导体的光吸收能力和酶的高活性/特异性, 可模拟自然界光合作用实现太阳能驱动的有用化学品合成. 作为EPCS中的“能量货币”, 辅因子(如NAD(P)+和NAD(P)H)参与了约80%的酶促氧化还原反应, 且在酶-光间充当物质/能量交换的枢纽. 然而, EPCS涉及光催化和酶催化反应, 涉及分子、电子和质子传递过程, 属于典型的复杂多相反应, 导致其光-化学转化效率与理论值差距较大.
本文从微观尺度对EPCS中分子-电子-质子传递过程进行了理解和剖析, 系统介绍了自然界光合作用和EPCS中的“新三传”现象. 此外, 与传统化工领域通过强化宏观尺度上“三传”(即质量传递、热量传递和动量传递)提升单元操作过程效率的方法类似, 本文总结并提出了通过协调优化“新三传”(即分子传递、电子传递和质子传递)来强化EPCS中物质-能量耦合关系, 进而提升光-化学转化效率的新策略. 其中, 分子传递主要包括电子供体分子从反应液向催化剂传递以及辅因子分子在光催化模块和酶催化模块间穿梭; 电子传递主要包括光生电子从其生成位点到光催化剂表面进而到电子媒介的传递; 质子传递主要包括质子从溶液或催化剂表面向电子媒介的传递. 期望通过“新三传”强化EPCS效率的理念, 打破自然界光合作用的局限, 实现温和条件下多种功能分子的高效合成, 为人工光合与绿色生物制造领域提供新思路.
李诗浩, 石家福, 刘书松, 李文萍, 陈裕, 单慧婷, 程雨晴, 吴洪, 姜忠义. 酶-光偶联催化系统中分子-电子-质子传递过程与机制[J]. 催化学报, 2023, 44: 96-110.
Shihao Li, Jiafu Shi, Shusong Liu, Wenping Li, Yu Chen, Huiting Shan, Yuqing Cheng, Hong Wu, Zhongyi Jiang. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system[J]. Chinese Journal of Catalysis, 2023, 44: 96-110.
Fig. 2. (a) Schematic diagram of natural photosynthesis. (b) Partial process of CCM in algal cells. (c) The photosynthetic electron and proton transfer in algal cells. (d) Schematic view of the molecule-electron-proton transfer in algal cells. Reprinted with permission from Ref. [46]. Copyright 2022, Springer Nature.
Fig. 3. Strategies for the intensification of molecule transfer. (a) Fortifying the mixing of the reaction system by a highly reactive agitating impeller. (b) Shortening the molecule transfer distance; (c) Enlarging the pore size. (d) Shortening the channel length. (e) Altering the morphology and dimension of the catalysts.
Fig. 4. Intensification of molecule transfer in EPCS. (a) Intensifying the transfer of TEOA to the photogenerated holes by regulating the thickness of the shell. Reprinted with permission from Ref. [73]. Copyright 2022, American Chemical Society. (b-d) Improving the shuttling of NAD+/NADH molecules between photocatalysts and enzyme catalysts by reducing the mass transfer distance. Reprinted with permission from Ref. [10]. Copyright 2022, John Wiley and Sons, Ref. [71]. Copyright 2022, American Chemical Society and Ref. [74]. Copyright 2022, American Chemical Society.
Fig. 5. Strategies for the intensification of electron transfer. (a) Fine-tuning the electron transfer distance. (b) Optimizing the electron transfer interface. (c) Building electron transfer channel. (d) Introducing electrically conductive template. (e) Introducing electron transfer mediator.
Fig. 6. (a) Improving the electron transfer by introducing electrically conductive module chemically converted graphene (CCG). Reprinted with permission from Ref. [89]. Copyright 2022, American Chemical Society. (b) Together enhancing the electron generation and electron transfer by adding additional photocatalyst (α-Fe302) and optimizing the interface of photocatalyst and building fast electron transfer channel (C, carbon moiety). Reprinted with permission from Ref. [90]. Copyright 2022, American Chemical Society. (c) Coordinating the fast electron transfer and the slow electron utilization by the reaction centers [Cp*Rh(bpydc)H2O]2+ behave as the electron buffer tank and store these electrons in the form of hydrides for subsequent regeneration of NADH. Reprinted with permission from Ref. [91]. Copyright 2022, American Chemical Society.
Fig. 7. Five main strategies for enhancing proton transfer in MOFs. Reprinted with permission from Ref. [103]. Copyright 2022, American Chemical Society.
Fig. 8. (a) The proton gradient formed by the transmembrane migration of protons in NADH subsequently drives the synthesis of ATP for the autonomous self-sustaining production of glucose-6-phosphate. Reprinted with permission from Ref. [110]. Copyright 2022, John Wiley and Sons. (b) Rapid intermolecular proton migration in NADH-mediated photocatalytic hydrogen evolution and enzymatic dehydrogenation of alcohol within the ADH catalytic pocket. Reprinted with permission from Ref. [114]. Copyright 2022, Springer Nature. (c) Intramolecular proton migration process in the Ru-BNAH/TiO2/Cu2O photocathode catalytic CO2 reduction by using BNAH as proton carrier. Reprinted with permission from Ref. [115]. Copyright 2022, Royal Society of Chemistry.
Fig. 9. Synergistic intensification of molecule and electron transfer in EPCS. (a) The electron-mediator was anchored to the nodes of the metal-organic framework to facilitate electron transfer and the shortened distance between photocatalytic and enzymatic systems could promote the shuttling of NAD+/NADH molecules. Reprinted with permission from Ref. [72]. Copyright 2022, American Chemical Society. (b) The conductive amorphous titania (a-TiO2) nanoshell facilitated the transfer of photogenerated electrons from GCN to the a-TiO2 surface, and the diffusion of TEOA from the a-TiO2 surface to GCN for consuming the holes could be enhanced by regulating the thickness of the shell. Reprinted with permission from Ref. [66]. Copyright 2022, American Chemical Society. (c) The Z-scheme photocatalysis module allowed the efficient transfer of electrons flowing along “BP-AM-M”, and the integration of NAD+ and the enzyme between the AM and BP layers enhanced the synergy between the photocatalytic and enzymatic systems. Reprinted with permission from Ref. [70]. Copyright 2022, Royal Society of Chemistry.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 刘鑫, 王茂弟, 任亦起, 刘嘉立, 戴慧聪, 杨启华. 构建模块化催化体系用于氢转移反应: 氢键的促进作用[J]. 催化学报, 2023, 52(9): 207-216. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[11] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[12] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[13] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[14] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[15] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||