催化学报 ›› 2022, Vol. 43 ›› Issue (1): 167-176.DOI: 10.1016/S1872-2067(21)63886-X
• 论文 • 上一篇
收稿日期:
2021-06-30
接受日期:
2021-07-12
出版日期:
2022-01-18
发布日期:
2021-11-15
通讯作者:
夏广杰,王阳刚
基金资助:
Wei Zhanga,b, Guang-Jie Xiaa,*(), Yang-Gang Wanga,#(
)
Received:
2021-06-30
Accepted:
2021-07-12
Online:
2022-01-18
Published:
2021-11-15
Contact:
Guang-Jie Xia,Yang-Gang Wang
About author:
# Tel: +86-15510462981; E-mail: wangyg@sustech.edu.cnSupported by:
摘要:
直接甲醇燃料电池(DMFC)可以将甲醇的化学能转化为电能. 甲醇在室温下是一种液体, 很容易运输和低风险储存. 在常用燃料中, 甲醇热值较高且价格便宜, 其单位价格热值甚至高于汽油. 更重要的是, 甲醇可以通过二氧化碳催化加氢制得. 因此可以将可再生能源转化为氢气, 并高效地存储在甲醇分子中. 而燃料电池消耗甲醇后, 产物只有二氧化碳和无污染的水. 在未来, 这种利用甲醇进行的碳回收过程可以实现接近零碳排放. 基于上述优点, DMFC已成为近年来最有前途并有望应用于移动车辆的燃料电池之一.
在DMFC中, 最关键的步骤是甲醇的电催化氧化反应. 本文通过密度泛函理论(DFT)计算, 研究并比较了由铂、铂铜合金和铜的甲醇电催化氧化反应机理. 通过系统研究复杂反应网络, 包括反应中间体脱氢、水分子解离和抗毒反应等基元反应步骤, 探索了该反应的催化过程. 在pH = 0和零电位条件下, 在纯铜电极表面, 吸附后甲醇的大部分脱氢步骤是吸能的, 这使其在甲醇电催化氧化中需要更高的电势, 因而活性较低. 而对于铂和铂铜合金, 其甲醇脱氢步骤主要是放能的, 比较容易进行. 但甲醇脱氢后产生的一氧化碳中间体在铂原子上结合太强, 会在活性位点积累, 最终毒化催化剂. 因此, 对铂及其合金催化剂, 其最大的挑战在于如何消耗掉快速累积的一氧化碳. 作为甲醇电催化氧化中另一个反应物, 水分子会在催化剂表面电化学解离为羟基, 而一氧化碳可以与这些羟基结合并消耗, 完成催化剂的抗毒反应. 但该抗毒反应是一个热力学基元反应, 较难直接通过改变电势直接促进, 主要由催化剂本身的性质所决定. DFT计算表明, 相比于纯铂电极, 铂与铜的合金化不仅可以降低一氧化碳和羟基之间结合的自由能能垒, 而且可以帮助水分子解离产生更多的羟基来提升催化剂抗中毒的能力. 这使得实验中铂铜合金比纯铂电极具有更高的催化活性.
以上结果揭示了在铂和其合金电催化剂表面, 吸附一氧化碳消耗的抗毒反应和水分子解离在甲醇电催化氧化反应中的重要性. 这些反应机理将助力更高活性合金电催化剂的理性设计, 促进直接甲醇燃料电池技术的发展及其在生产生活中的应用.
张伟, 夏广杰, 王阳刚. 铂铜合金催化甲醇电氧化的机理研究[J]. 催化学报, 2022, 43(1): 167-176.
Wei Zhang, Guang-Jie Xia, Yang-Gang Wang. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy[J]. Chinese Journal of Catalysis, 2022, 43(1): 167-176.
Intermediates | Pt(110) | Pt3Cu | Cu(110) | |||||
---|---|---|---|---|---|---|---|---|
ΔEb | Site | ΔEb | Site | ΔEb | Site | |||
CH3OH | -0.95 | top | -0.93 | top | -0.71 | bridge | ||
CH2OH | -3.11 | top | -3.41 | bridge | -2.08 | bridge | ||
CHOH | -4.11 | bridge | -4.24 | top | -2.37 | bridge | ||
COH | -5.50 | bridge | -4.57 | bridge | -3.30 | bridge | ||
CO | -2.50 | bridge | -2.50 | top | -1.12 | bridge | ||
HCO | -3.63 | bridge | -3.69 | bridge | -2.19 | bridge | ||
C(OH)2 | -3.50 | top | -3.64 | top | -2.00 | bridge | ||
CH3O | -2.89 | bridge | -3.02 | bridge | -3.26 | bridge | ||
CH2O | -1.53 | bridge | -1.32 | bridge | -0.68 | hcp | ||
H2COOH | -2.68 | bridge | -2.87 | bridge | -3.14 | bridge | ||
HCOOH | -1.08 | top | -1.02 | top | -0.74 | top | ||
COOH | -3.70 | bridge | -3.81 | bridge | -2.77 | bridge | ||
H2COO | -3.76 | bridge | -3.56 | hcp | -4.98 | hcp | ||
HCOO | -3.66 | bridge | -3.68 | bridge | -3.79 | bridge | ||
OH | -3.54 | bridge | -3.7 | bridge | -4.05 | bridge |
Table 1 The adsorption energies between intermediates and substrates (ΔEb) at the most favorable binding sites.
Intermediates | Pt(110) | Pt3Cu | Cu(110) | |||||
---|---|---|---|---|---|---|---|---|
ΔEb | Site | ΔEb | Site | ΔEb | Site | |||
CH3OH | -0.95 | top | -0.93 | top | -0.71 | bridge | ||
CH2OH | -3.11 | top | -3.41 | bridge | -2.08 | bridge | ||
CHOH | -4.11 | bridge | -4.24 | top | -2.37 | bridge | ||
COH | -5.50 | bridge | -4.57 | bridge | -3.30 | bridge | ||
CO | -2.50 | bridge | -2.50 | top | -1.12 | bridge | ||
HCO | -3.63 | bridge | -3.69 | bridge | -2.19 | bridge | ||
C(OH)2 | -3.50 | top | -3.64 | top | -2.00 | bridge | ||
CH3O | -2.89 | bridge | -3.02 | bridge | -3.26 | bridge | ||
CH2O | -1.53 | bridge | -1.32 | bridge | -0.68 | hcp | ||
H2COOH | -2.68 | bridge | -2.87 | bridge | -3.14 | bridge | ||
HCOOH | -1.08 | top | -1.02 | top | -0.74 | top | ||
COOH | -3.70 | bridge | -3.81 | bridge | -2.77 | bridge | ||
H2COO | -3.76 | bridge | -3.56 | hcp | -4.98 | hcp | ||
HCOO | -3.66 | bridge | -3.68 | bridge | -3.79 | bridge | ||
OH | -3.54 | bridge | -3.7 | bridge | -4.05 | bridge |
Fig. 1. The 3D configurations of the favorable adsorption of intermediates. (a) Pt(110), (b) Pt3Cu, and (c) Cu(110) surface. Blue and orange spheres represent the first- and second-layer Pt atoms; Pink and light pink spheres indicate the first- and second-layer Cu atoms; Red, grey and white spheres represent O, C and H atoms, respectively.
Elementary reaction step | Pt(110) | Pt3Cu | Cu(110) |
---|---|---|---|
(R01) CH3OH + * →CH2OH* + H+ + e- | -0.56 | -0.78 | 0.51 |
(R02) CH2OH* → CHOH* + H+ + e- | -0.10 | 0.00 | 0.53 |
(R03) CHOH* → COH* + H+ + e- | -0.01 | 1.00 | 0.43 |
(R04) COH* →CO* + H+ + e- | -0.72 | -1.68 | -1.59 |
(R05) CO* + H2O → CO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R06) CO* + OH* → COOH* + * | 0.36 | 0.47 | 0.47 |
(R07) COOH* → CO2 + * + H+ + e- | 0.49 | 0.61 | -0.39 |
(R08) CH3OH + * → CH3O* + H+ + e- | 0.05 | -0.09 | -0.33 |
(R09) CH3O* → CH2O* + H+ + e- | -0.43 | -0.13 | 0.75 |
(R10) CH2OH* → CH2O* + H+ + e- | 0.18 | 0.56 | -0.09 |
(R11) CH2O* + H2O + * → CH2O* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R12) CH2O* → HCO* + H+ + e- | -0.36 | -0.61 | 0.20 |
(R13) CHOH* → HCO* + H+ + e- | -0.09 | -0.04 | -0.41 |
(R14) HCO* → CO*+H++e- | -0.65 | -0.64 | -0.74 |
(R15) CH2O* + OH* → H2COOH* + * | 0.59 | 0.40 | -0.18 |
(R16) H2COOH* → H2COO* + H+ + e- | 0.37 | 0.75 | -0.36 |
(R17) H2COOH* → HCOOH* + H+ +e- | -0.87 | -0.65 | -0.08 |
(R18) HCOOH* → COOH* + H+ + e- | -0.37 | -0.53 | 0.19 |
(R19) HCOOH* →HCOO*+H++ e- | -0.21 | -0.28 | -0.68 |
(R20) H2COO* →HCOO*+H++e- | -1.45 | -1.67 | -0.41 |
(R21) HCOO* →CO2 + * + H+ + e- | 0.33 | 0.35 | 0.49 |
(R22) COH* + H2O + * → COH* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R23) COH* + OH* → C(OH)2*+ * | -0.53 | -1.42 | -0.70 |
(R24) C(OH)2* → COOH* + H+ + e- | 0.17 | 0.20 | -0.42 |
(R25) HCO* + OH* → HCOOH* + * | 0.08 | 0.36 | -0.46 |
(R26) HCO* + H2O + * → HCO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R27) H2COH* + OH* → H2COH*+ O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R28) H2COH* + O* → H2COOH* + * | 0.21 | 0.03 | -1.51 |
(R29) HCOH* + OH* → HCOH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R30) HCOH* + O* → HCOOH*+ * | -0.56 | -0.61 | -2.12 |
(R31) COH* + OH* → COH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R32) COH* + O* → COOH*+ * | -0.91 | -2.14 | -2.35 |
(R33) CO* + OH* → CO* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R34) CO* + O* → CO2 + * | 0.30 | 0.15 | -1.15 |
(R35) HCO* + OH* → HCO* + O*+ H+ + e- | 0.55 | 0.93 | 1.24 |
(R36) HCO* + O* →HCOO* + * | -0.68 | -0.84 | -2.39 |
(R37) H2CO* + OH* → H2CO* + O*+H+ + e- | 0.55 | 0.93 | 1.24 |
(R38) H2CO* + O* → H2COO* + * | 0.41 | 0.22 | -1.78 |
(R39) H2O+ *→ OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R40) OH* → H+ + O* + e- | 0.55 | 0.93 | 1.24 |
(R41) H* → H+ + * + e- | 0.43 | 0.52 | -0.03 |
Table 2 The calculated reaction free energy change (ΔG) in methanol electro-oxidation on Pt(110), Pt3Cu and Cu(110) surface. The corresponding energy change (ΔE), ZPE change (ΔZPE) and entropy changes (ΔS) are detailly shown in Table S3.
Elementary reaction step | Pt(110) | Pt3Cu | Cu(110) |
---|---|---|---|
(R01) CH3OH + * →CH2OH* + H+ + e- | -0.56 | -0.78 | 0.51 |
(R02) CH2OH* → CHOH* + H+ + e- | -0.10 | 0.00 | 0.53 |
(R03) CHOH* → COH* + H+ + e- | -0.01 | 1.00 | 0.43 |
(R04) COH* →CO* + H+ + e- | -0.72 | -1.68 | -1.59 |
(R05) CO* + H2O → CO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R06) CO* + OH* → COOH* + * | 0.36 | 0.47 | 0.47 |
(R07) COOH* → CO2 + * + H+ + e- | 0.49 | 0.61 | -0.39 |
(R08) CH3OH + * → CH3O* + H+ + e- | 0.05 | -0.09 | -0.33 |
(R09) CH3O* → CH2O* + H+ + e- | -0.43 | -0.13 | 0.75 |
(R10) CH2OH* → CH2O* + H+ + e- | 0.18 | 0.56 | -0.09 |
(R11) CH2O* + H2O + * → CH2O* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R12) CH2O* → HCO* + H+ + e- | -0.36 | -0.61 | 0.20 |
(R13) CHOH* → HCO* + H+ + e- | -0.09 | -0.04 | -0.41 |
(R14) HCO* → CO*+H++e- | -0.65 | -0.64 | -0.74 |
(R15) CH2O* + OH* → H2COOH* + * | 0.59 | 0.40 | -0.18 |
(R16) H2COOH* → H2COO* + H+ + e- | 0.37 | 0.75 | -0.36 |
(R17) H2COOH* → HCOOH* + H+ +e- | -0.87 | -0.65 | -0.08 |
(R18) HCOOH* → COOH* + H+ + e- | -0.37 | -0.53 | 0.19 |
(R19) HCOOH* →HCOO*+H++ e- | -0.21 | -0.28 | -0.68 |
(R20) H2COO* →HCOO*+H++e- | -1.45 | -1.67 | -0.41 |
(R21) HCOO* →CO2 + * + H+ + e- | 0.33 | 0.35 | 0.49 |
(R22) COH* + H2O + * → COH* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R23) COH* + OH* → C(OH)2*+ * | -0.53 | -1.42 | -0.70 |
(R24) C(OH)2* → COOH* + H+ + e- | 0.17 | 0.20 | -0.42 |
(R25) HCO* + OH* → HCOOH* + * | 0.08 | 0.36 | -0.46 |
(R26) HCO* + H2O + * → HCO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R27) H2COH* + OH* → H2COH*+ O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R28) H2COH* + O* → H2COOH* + * | 0.21 | 0.03 | -1.51 |
(R29) HCOH* + OH* → HCOH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R30) HCOH* + O* → HCOOH*+ * | -0.56 | -0.61 | -2.12 |
(R31) COH* + OH* → COH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R32) COH* + O* → COOH*+ * | -0.91 | -2.14 | -2.35 |
(R33) CO* + OH* → CO* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R34) CO* + O* → CO2 + * | 0.30 | 0.15 | -1.15 |
(R35) HCO* + OH* → HCO* + O*+ H+ + e- | 0.55 | 0.93 | 1.24 |
(R36) HCO* + O* →HCOO* + * | -0.68 | -0.84 | -2.39 |
(R37) H2CO* + OH* → H2CO* + O*+H+ + e- | 0.55 | 0.93 | 1.24 |
(R38) H2CO* + O* → H2COO* + * | 0.41 | 0.22 | -1.78 |
(R39) H2O+ *→ OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R40) OH* → H+ + O* + e- | 0.55 | 0.93 | 1.24 |
(R41) H* → H+ + * + e- | 0.43 | 0.52 | -0.03 |
Fig. 3. The free energy diagram of water dissociation with electrochemical step (red dash lines) and thermodynamic step (blue lines). (a) Pt(110); (b) Pt3Cu; (c) Cu(110); (d) The corresponding 3D configurations of transition states.
Fig. 4. The dehydrogenation steps of the methanol reactant to the adsorbed CO. (a) The flow diagram for the dehydrogenation of methanol to CO. The blue arrows show the favorable reaction pathway on Pt(111) and Pt3Cu. The corresponding free energy changes on (b) Pt(110), (c) Pt3Cu and (d) Cu(110).
Fig. 5. The free energy barriers of the anti-poison processes by the OH*. Its reactions with CO* and those possible intermediates before dehydrogenations, i.e. H2CO*, HCO* and COH*, are investigated. (a) Pt(110) surface; (b) Pt3Cu surface; (c) Cu(110) surface; (d) the corresponding 3D configurations of transition states. The detail free energy barrier values are shown in Table S4.
Fig. 6. The dehydrogenation steps after the anti-poison steps to form the CO2 product. (a) The flow diagram for the dehydrogenation steps to form CO2. The blue arrows show the favorable reaction pathway on Pt(111) and Pt3Cu. The corresponding free energy changes on Pt(110) (b), Pt3Cu (c) and Cu(110) (d).
Fig. 7. The free energy diagram of the favorable reaction pathway in MOR with considering both electrochemical steps and thermodynamic steps. The blue dash lines represent the thermodynamic water dissociation step, while the red lines represent the anti-poison reaction by OH*. (a) Pt(110); (b) Pt3Cu; (c) Cu(110). The detail relative free energies are shown in Table S6. The less favorable reaction pathway involving the anti-poison by O* is shown in Fig. S3 and Table S7.
|
[1] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[2] | 程璐, 陈许宁, 胡培君, 曹宵鸣. 双氧水对于单核铜分子筛催化甲烷直接氧化制甲醇反应性能的利弊[J]. 催化学报, 2023, 51(8): 135-144. |
[3] | 刘赵春, 宗雪, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. 金属掺杂SnO2电化学还原CO2制甲酸的计算研究[J]. 催化学报, 2023, 50(7): 249-259. |
[4] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[5] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[6] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
[7] | 赵志月, 蒋志伟, 黄一哲, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, 罗惠霞, 严凯. 富空穴CoSi合金无溶剂无碱醇氧化[J]. 催化学报, 2023, 48(5): 175-184. |
[8] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
[9] | 陈成成, 刘芳庭, 张巧钰, 张正国, 刘琼, 方晓明. 理论设计和实验研究吡啶掺杂聚合氮化碳提升光催化CO2还原性能[J]. 催化学报, 2023, 46(3): 91-102. |
[10] | 吴尧, 杨杰夫, 郑媚, 胡点轶, Teddy Salim, 汤碧珺, 刘政, 李述周. 直接化学气相沉积法制备二维钴铁氧体用于高效析氧反应[J]. 催化学报, 2023, 55(12): 265-277. |
[11] | 蒋婷婷, 谢伟伟, 耿仕鹏, 李如春, 宋树芹, 王毅. 构建氧空位调控的钼酸钴纳米片用于高效催化析氧反应[J]. 催化学报, 2022, 43(9): 2434-2442. |
[12] | 孟翔宇, 李睿, 杨峻懿, 许世明, 张辰晨, 尤可嘉, 马宝春, 管红霞, 丁勇. 六核环状钴配合物用于光催化CO2到CO转化[J]. 催化学报, 2022, 43(9): 2414-2424. |
[13] | 李楠, 王传义, 章柯, 吕海钦, 苑明哲, Detlef W. Bahnemann. 光催化转化低浓度NO的进展与展望[J]. 催化学报, 2022, 43(9): 2363-2387. |
[14] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[15] | 高怡静, 张世杰, 孙翔, 赵伟, 卓涵, 庄桂林, 王式彬, 姚子豪, 邓声威, 钟兴, 魏中哲, 王建国. 氧官能团MXenes用于电催化合成氨的理论筛选[J]. 催化学报, 2022, 43(7): 1860-1869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||