催化学报 ›› 2022, Vol. 43 ›› Issue (3): 595-610.DOI: 10.1016/S1872-2067(21)63923-2

• 述评 • 上一篇    下一篇

光电催化用于高附加值化学品合成

苗昱聪, 邵明飞*()   

  1. 北京化工大学, 化工资源有效利用国家重点实验室, 北京 100029
  • 收稿日期:2021-07-21 修回日期:2021-07-21 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 邵明飞
  • 基金资助:
    国家自然科学基金(2209003);国家自然科学基金(21922501);国家自然科学基金(21871021);国家自然科学基金(21521005);北京市自然科学基金(2192040)

Photoelectrocatalysis for high-value-added chemicals production

Yucong Miao, Mingfei Shao*()   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-07-21 Revised:2021-07-21 Online:2022-03-18 Published:2022-02-18
  • Contact: Mingfei Shao
  • About author:Prof. Dr. Mingfei Shao (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology (BUCT)) received his Ph.D degree in 2014 from Beijing University of Chemical Technology under the supervision of Prof. Xue Duan, after which he joined the staff of BUCT. He was also a visiting student at the University of Oxford in 2013. His research directions include intercalation chemistry and energy materials, electrocatalysis/photoelectrocatalysis and advanced energy devices. He has been published in more than 80 SCI papers as the first or corresponding/co-corresponding author in international journals such as J. Am. Chem. Soc, Angew. Chem. Int. Ed., Adv. Mater., Chem, which have been cited more than 7500 times (H index = 45). More than 10 Chinese patents have been authorized respect to his work. He proposed a new idea of photoelectronsyhthesis/electrosynthesis for the hydrogen generation coupled with organic oxidation. He also proposed a new method of integrated electrode design based on layered double hydroxides. He has obtained and award from the National Natural Science Foundation of China--Outstanding Youth Foundation in 2019, and Catalysis Rising Star Award from the Catalysis Society of China in 2021. He joined the editorial board of Chin. J. Catal. in 2020.
  • Supported by:
    National Natural Science Foundation of China(2209003);National Natural Science Foundation of China(21922501);National Natural Science Foundation of China(21871021);National Natural Science Foundation of China(21521005);Beijing Natural Science Foundation(2192040)

摘要:

化石燃料的过度消耗导致了能源短缺和环境破坏, 因此可再生清洁能源的开发已成为当务之急. 在众多可再生能源中, 太阳能因其环境友好, 储量巨大且分布广泛等特点而引起了研究者们的兴趣. 光电催化(PEC)是一种能够将可再生太阳能转化为化学能的方法, 而最受关注的是通过PEC水分解来获得高附加值的氢能源. 欲使PEC系统实现水分解, 理论上应利用带隙至少为1.23 eV的半导体光电极, 在光激发下使产生的光生空穴和电子分别在阳极进行水的氧化以产生氧气, 并在阴极实现水的还原来产生氢气. 然而在此过程中, 阳极发生的析氧反应(OER)是一个动力学缓慢的四电子过程, 并且反应产出的氧气相对于氢气是一种低附加值的产物. 这就导致了PEC水分解体系效率较低, 经济性也不令人满意. 实际上, 除水分解之外, PEC体系还有许多其他应用, 包括水氧化制过氧化氢、有机物选择性氧化、有机污染物氧化降解以及二氧化碳还原等. 这些应用能够提升产物的附加值, 如水能被氧化为更高价值的过氧化氢而不是氧气. 此外, 例如甘油这一价格低廉的有机生物质可以被氧化转化为1,3-二羟基丙酮和甘油醛等高附加值化学品, 此类反应加快反应速率的特点同样能使得PEC系统的实用性提升. 最近, 在光阴极上进行二氧化碳还原反应同样得到了许多关注, 因为它能够同时起到将太阳能转换为化学能和减少温室气体来保护环境的双重目的. 但想要实现以上的目标, 必须选择合适的半导体材料以满足各体系的需要. 因此, 在一个PEC系统中同时设计能够带来更多效益的反应和与之匹配的高效光电极是一个巨大的挑战.
以往有许多优秀的文章总结了PEC水分解体系的设计和优化, 但目前还缺少对如何实现PEC系统中各种高附加值产品生产以及环境处理应用的全面讨论. 基于此目的, 本述评聚焦于PEC系统中多种面向现实应用的反应体系, 详细讨论了系统中光电极的设计制备、反应环境调控, 并揭示工作机理. 相信这篇关于PEC技术应用拓展的详细述评将对太阳能-化学能转化以发展清洁能源和环境保护的方向带来有效的借鉴和启示.

关键词: 光电催化, 高附加值化学品, 光电极, 有机物氧化, 二氧化碳还原

Abstract:

Photoelectrocatalysis (PEC) is a promising approach that can convert renewable solar energy into chemical energy, while most concern is concentrated on PEC water splitting to obtain high-value-added fuel—hydrogen. In practice, more economic benefits can be produced based on PEC technique, such as H2O oxidative H2O2 synthesis, organic selective oxidation, organic pollutants degradation and CO2 reduction. Although there are plenty of excellent reviews focusing on the PEC water splitting system, the production of various high-value-added chemicals in PEC systems has not been discussed synthetically. This Account will focus on the production process of various high-value-added chemicals through PEC technology. The photoelectrode design, reaction environment and working mechanisms of PEC systems are also discussed in detail. We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow-up development of this technology.

Key words: Photoelectrocatalysis, High-value-added chemicals, Photoelectrode, Organic oxidation, Carbon dioxide reduction