催化学报 ›› 2022, Vol. 43 ›› Issue (3): 611-635.DOI: 10.1016/S1872-2067(21)63899-8

• 综述 • 上一篇    下一篇

轻元素调控的贵金属催化剂在能源相关领域的应用

陈辉a, 张博b, 梁宵a, 邹晓新a,*()   

  1. a吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春 130012
    b吉林大学未来科学国际合作联合实验室, 吉林长春 130012
  • 收稿日期:2021-04-29 修回日期:2021-04-29 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 邹晓新
  • 基金资助:
    国家自然科学基金(21922507);国家自然科学基金(21771079);国家自然科学基金(21901083);国家自然科学基金(21621001);吉林省科技发展计划(YDZJ202101ZYTS126);中央高校基本科研业务费(21901083);博士后科学基金面上项目(2021M691202);111引智计划(B17020)

Light alloying element-regulated noble metal catalysts for energy-related applications

Hui Chena, Bo Zhangb, Xiao Lianga, Xiaoxin Zoua,*()   

  1. aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bInternational Center of Future Science, Jilin University, Changchun 130012, Jilin, China
  • Received:2021-04-29 Revised:2021-04-29 Online:2022-03-18 Published:2022-02-18
  • Contact: Xiaoxin Zou
  • About author:Xiaoxin Zou has received his Ph.D. in inorganic chemistry from Jilin University (China) in June 2011; and then moved to the University of California, Riverside, and Rutgers, The State University of New Jersey, as a postdoctoral scholar from July 2011 to October 2013. He is currently a professor at the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry in Jilin University. His research interests are in hydrogen energy materials chemistry, comprising the elucidation of the atomic basis for water-splitting electrocatalysts, the prediction and searching of efficient catalysts with novel crystal structures as well as the development of original catalyst design principles. Some of his recent progresses include the computation-driven structural design/engineering of water splitting catalysts, the structural understanding and synthetic methods of interstitial intermetallic catalysts, the design principles of low-iridium oxygen-evolution catalysts for PEM electrolyzers, and the synthetic strategies of large-area, highly stable electrode materials. He has authored 80+ peer-reviewed papers and 10 patents. He joined the editorial board of Chin. J. Catal. in 2020.
  • Supported by:
    National Natural Science Foundation of China(21922507);National Natural Science Foundation of China(21771079);National Natural Science Foundation of China(21901083);National Natural Science Foundation of China(21621001);Jilin Province Science and Technology Development Plan(YDZJ202101ZYTS126);Fundamental Research Funds for the Central Universities(21901083);China Postdoctoral Science Foundation(2021M691202);111 Project(B17020)

摘要:

贵金属广泛用于多相催化研究, 对于诸多具有重要科学意义和工业应用价值的化学反应展现出优异的催化活性和选择性. 引入轻合金元素(如C, H, B和N), 可以调控贵金属的晶体结构和电子性质, 是进一步提高贵金属催化性能的重要策略. 与传统的金属合金催化剂相比, 这种轻元素合金化的催化剂具有一些独特性: (1)轻元素由于原子尺寸很小, 容易溶于金属晶格的间隙位点; (2)一些轻元素(如C, N和S)的电负性与金属的差别很大, 能够在相邻原子间引起较大的电荷转移; (3)轻元素-金属合金中的电子相互作用主要由金属的d轨道和轻元素的sp轨道杂化主导, 这与金属合金中的d-d轨道杂化显著不同. 这些独特性为贵金属原子结构和电子结构的调控以及催化性能的优化带来了更多的可能性. 轻合金元素研究的主要瓶颈在于其原子尺寸小、分布不均匀、难以直接观察和精准控制, 从而限制了对活性提升机制和构效关系的研究. 近几十年来, 纳米合成技术和材料表征技术的长足发展使得轻合金元素改性的催化剂研究渐入佳境. 此外, 计算化学在结构分析和催化应用中的日趋成熟为揭示轻合金元素对贵金属晶体结构、电子结构和催化性质的调控作用提供了有力工具.
本文综述了引入轻合金元素改性的贵金属催化剂在不同催化应用中的主要研究进展, 总结了贵金属催化性能的主要影响因素(包括轻合金元素的种类、位置、浓度和有序度等), 阐述了轻合金原子如何影响催化反应性能, 介绍了轻元素的实验引入策略以及揭示轻元素合金效应的实验表征和理论研究方法. 重点讨论了不同轻合金原子改性的贵金属基催化剂在催化反应中的广泛应用, 并试图建立其结构特征与催化性能之间的密切联系. 总的来说, 轻合金原子的活性调控作用主要表现在以下几个方面: (1)晶相转变: 轻元素的引入能够改变金属原子的堆积模式, 产生有利于催化反应的晶相结构; (2)电荷转移: 轻元素和母体金属的电负性差异能够导致电荷重新分布, 影响金属的电子结构; (3)应力效应: 轻元素的引入会导致金属晶格膨胀, 产生拉伸应力, 引起电子结构变化; (4)配体效应: 轻元素的sp轨道和金属的d轨道杂化, 引起d带中心下移, 降低表面吸附性质; (5)集团效应: 轻元素的引入能够孤立金属原子, 产生特定的表面金属位点, 有利于促进催化反应; (6)次表面化学: 在氢相关的催化反应中, 次表面的间隙轻元素能够阻止氢的渗入, 抑制活性衰减或不利的副反应发生.
最后, 本文对于当前该领域存在的挑战和未来的发展前景进行了分析, 以期促进该合金体系的合成、理解和催化应用, 内容包括: (1)开发更精确可控的轻元素掺入策略; (2)合理阐明轻合金元素与宏观催化性能之间的关系; (3)发展新型的轻元素改性催化剂; (4)扩展轻元素改性催化剂的催化应用范围.

关键词: 贵金属, 多相催化, 轻元素, 合金, 电子结构

Abstract:

Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest. The introduction of light atomic species (e.g., H, B, C, and N) into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties. In this review, we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions, particularly for energy-related applications. We summarize the types, location, concentration, and ordering degree of light atoms as major factors in the performance of noble metal-based catalysts, with emphasis on how they can be rationally controlled to promote activity and selectivity. We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects. We further focus on the wide usage of noble metal-based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances. Finally, we discuss current challenges and future perspectives regarding the development of highly efficient noble metal-based catalysts modified with light elements.

Key words: Noble metal, Heterogeneous catalysis, Light element, Alloy, Electronic structure