催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1360-1370.DOI: 10.1016/S1872-2067(21)63978-5

• 论文 • 上一篇    下一篇

Ag纳米粒子修饰有机/无机Z型3DOMM-TiO2‒x异质结的构建及高效光催化和光电催化分解水制氢

徐志莹a, 郭春雨a,f, 刘欣b, 李苓a, 王亮a, 徐浩兰c, 张东柯d, 李春虎a, 李勤e(), 王文泰a()   

  1. a中国海洋大学化学化工学院, 海洋化学理论与技术教育部重点实验室, 山东青岛266100, 中国
    b天津理工大学,新能源材料与低碳技术研究院, 天津300384, 中国
    c澳大利亚南澳大学未来产业研究院, 南澳大利亚州, 澳大利亚
    d澳大利亚西澳大学能源中心, 西澳大利亚州, 澳大利亚
    e澳大利亚格里菲斯大学, 昆士兰微米纳米技术中心, 昆士兰, 澳大利亚
    f青岛工学院食品工程学院, 山东青岛266300, 中国
  • 收稿日期:2021-09-16 接受日期:2021-11-15 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: 李勤,王文泰
  • 基金资助:
    国家自然科学基金(51602297);煤炭高效利用与绿色化工国家重点实验室开放课题(2021-K53);澳大利亚基金委(DP160104089);澳大利亚基金委(DP180103588)

Ag nanoparticles anchored organic/inorganic Z-scheme 3DOMM-TiO2‒x-based heterojunction for efficient photocatalytic and photoelectrochemical water splitting

Zhiying Xua, Chunyu Guoa,f, Xin Liub, Ling Lia, Liang Wanga, Haolan Xuc, Dongke Zhangd, Chunhu Lia, Qin Lie(), Wentai Wanga()   

  1. aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China
    bInstitute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
    cFuture Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia 5095, Australia
    dCentre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
    eQueensland Micro- and Nanotechnology Centre, Griffith University Nathan Campus, Brisbane, Queensland 4111, Australia
    fCollege of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, Shandong, China
  • Received:2021-09-16 Accepted:2021-11-15 Online:2022-05-18 Published:2022-03-23
  • Contact: Qin Li, Wentai Wang
  • Supported by:
    the National Natural Science Foundation of China(51602297);Opening Fund of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2021-K53);Australian Research Council(DP160104089);Australian Research Council(DP180103588)

摘要:

资源短缺和环境污染成为制约当今社会发展的两大难题, 清洁能源代替化石能源的大潮已全面开启, 而氢能作为新一代清洁能源在全球范围内备受关注与重视. 太阳能和水都是丰富的可再生资源, 利用太阳能将水转化为氢能的光催化和光电催化分解水产氢技术具有广阔的前景. 二氧化钛(TiO2)作为一种n型半导体, 具有耐光腐蚀性、稳定性、低成本和无毒性等优点, 已被广泛应用于光催化降解污染物、产氢和CO2转化等领域. 但TiO2也存在光谱响应范围较窄、光生载流子复合率高、氧化动力学缓慢等缺点, 严重限制了其在光催化和光电催化分解水方面的应用. 为了改善TiO2的上述缺点, 本文通过形貌控制、结构设计、缺陷工程、异质结构建和贵金属掺杂等多种策略合成了Ag/PANI/3DOMM-TiO2-x三元催化剂, 显著提升了光催化和光电催化分解水产氢的性能.

Ag/PANI/3DOMM-TiO2-x催化剂具有以下特点: (1)催化剂为三维有序大孔结构且具有较大的比表面积和均匀的孔径, 有利于传质扩散并为催化剂提供了更多的吸附和反应位点; (2)在3DOMM-TiO2中引入Ti3+和氧空位等缺陷可以显著减少带隙宽度, 提高光吸收效率; (3)聚苯胺(PANI)作为一种典型的导电聚合物在可见光范围内表现出较高的吸收能力和良好的导电性; (4)成功构建了Z型异质结光催化剂, 由于氧化和还原位点分别在3DOMM-TiO2-x和PANI两种催化剂表面, 从而可以显著提高光生载流子的有效分离和运输, 并且催化剂具有更强的氧化还原能力; (5)通过贵金属银纳米颗粒的表面等离子体共振(SPR)效应增强对可见光的吸收, 并且银纳米颗粒的SPR效应会产生更多的热电子并转移到PANI的导带, 进而直接参与还原反应制氢.

结合X射线衍射光谱和X射线光电子能谱表征结果, 说明成功合成了Ag/PANI/3DOMM-TiO2-x催化剂; 扫描电子显微镜, 透射电子显微镜, 高分辨率透射电镜以及电子自旋共振等表征结果表明, Ag/PANI/3DOMM-TiO2-x催化剂具有三维有序大孔和中孔结构并成功引入了氧空位和银纳米颗粒, UV-Vis DRS表征说明, 通过对催化剂光学性能的不断改进, 催化剂对可见光的吸收逐渐增强, 催化剂的禁带宽度不断减小. 基于上述各方面的协同效应, Ag/PANI/3DOMM-TiO2-x催化剂在光催化和光电催化水分解制氢中均表现出较强的活性, 光催化制氢速率为420.90 μmol g-1 h-1, 分别为商用P25和3DOMM-TiO2的19.80倍和2.06倍. 在光电化学试验中, 通过AM 1.5 G模拟太阳光照射, 在0.5 mol/L NaSO4的缓冲溶液中, Ag/PANI/3DOMM-TiO2-x复合光电阳极在1.23 V vs. RHE下的光电流密度为1.55 mA cm-2, 约为3DOMM-TiO2的5倍. 综上, 本文合成的有机/无机Z型光催化剂Ag/PANI/3DOMM-TiO2-x在光催化和光电催化水分解制氢方面具有良好的应用潜力.

关键词: 光电催化, 光催化, 有机/无机复合材料, 异质结, 分解水

Abstract:

Narrow spectral response, low charge separation efficiency and slow water oxidation kinetics of TiO2 limit its application in photoelectrochemical and photocatalytic water splitting. Herein, a promising organic/inorganic composite catalyst Ag/PANI/3DOMM-TiO2-x with a three-dimensional ordered macro-and meso-porous (3DOMM) structure, oxygen vacancy and Ti3+ defects, heterojunction formation and noble metal Ag was designed based on the Z-scheme mechanism and successfully prepared. The Ag/PANI/3DOMM-TiO2-x ternary catalyst exhibited enhanced hydrogen production activity in both photocatalytic and photoelectrochemical water splitting. The photocatalytic hydrogen production rate is 420.90 μmol g-1 h-1, which are 19.80 times and 2.06 times higher than the commercial P25 and 3DOMM-TiO2, respectively. In the photoelectrochemical tests, the Ag/PANI/3DOMM-TiO2-x photoelectrode shows enhanced separation and transfer of carriers with a high current density of 1.55 mA cm-2 at equilibrium potential of 1.23 V under simulated AM 1.5 G illumination, which is approximately 5 times greater than the 3DOMM-TiO2. The present work has demonstrated the promising potential of organic/inorganic Z-scheme photocatalyst in driving water splitting for hydrogen production.

Key words: Photoelectrochemical, Photocatalysis, Organic/inorganic composite, Heterojunction, Water splitting