催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2792-2801.DOI: 10.1016/S1872-2067(22)64100-7
收稿日期:
2022-01-29
接受日期:
2022-04-06
出版日期:
2022-11-18
发布日期:
2022-10-25
通讯作者:
蔡俊,陈艳霞
基金资助:
Jie Wei, Wei Chen, Da Zhou, Jun Cai#(), Yan-Xia Chen*(
)
Received:
2022-01-29
Accepted:
2022-04-06
Online:
2022-11-18
Published:
2022-10-25
Contact:
Jun Cai, Yan-Xia Chen
About author:
Yan-Xia Chen is a professor at the University of Science and Technology of China. She finished her Ph.D in Xiamen University. She has spent ca. 7 years in Germany and Japan for her postdoc research. Her research covers spectro-electrochemistry, single crystal electrochemistry, and electrocatalysis. Her group has focused on developing spectroscopic methods with both qualitative and quantitative analytical functions, computational simulation skills and using them in fundamental studies on electrochemical interfacial structure, reaction mechanisms, and kinetics of fuel cell processes, such as the oxygen reduction reaction and the oxidation of small organic molecules. She has published more than 130 peer-reviewed papers and three chapters in scientific books.
Supported by:
摘要:
Pt基材料对众多电催化反应都具有较优异的性能, 因此是被广泛研究的一类电催化剂. 尤其自20世纪80年代实现在室温室压环境(Clavilier method)制备出结构明确、表面洁净的Pt单晶电极以来, 它一直作为最重要的一类模型电极用于揭示电催化反应的结构-性能关系以及机理和动力学. 具有明确表面结构的Pt单晶电极在温和的电化学条件下(例如, 在双电层、氢的欠电位沉积(H-UPD)或温和的氢析出/氧物种(OH)吸脱附等电位区域)通常被认为是相对稳定的. 然而, 随着电化学原位显微/光谱技术的进步, 在过去的十年中, 人们在温和的电化学条件下也观察到了Pt基模型电极表面细微的重构现象. 通过产生或破坏高活性位点等, 这种细微的表面重构可以显著改变电催化性能, 并极大地干扰对结构-性能关系以及相关反应机理的推断, 同时也对理论预测与实验测量之间, 以及不同环境下的实验测量结果之间的一致性提出了巨大挑战.
本文以CO的吸附与氧化、H2吸附与氢析出反应和O2还原等常见的电化学过程为例, 总结了在温和电化学反应条件下具有明确表面结构的Pt(基)模型电极表面观察到的一些典型重构现象. 这些重构现象可能是导致在多种电催化反应的结构-性能关系研究中理论预测和实验结果之间, 以及不同组的实验结果之间存在差异的原因. 例如Pt(111)单晶电极上氢气析出反应(HER)的交换电流密度一直存在较大的分歧; 理论和实验预测的Pt阶梯晶面在酸性溶液中氧还原反应(ORR)活性顺序彼此矛盾以及CO分子的氧化前峰出现的条件也存在一定争议等等. 这些结果也能为其他电催化体系的构效关系研究提供一定启示. 此外, 本文也强调了在电化学测量之前、期间和之后对电极进行精细结构表征的必要性及其对准确认识相关电催化体系的反应机理、动力学和构效关系的意义, 并对多种原位谱学、显微表征技术未来在时间和空间分辨率上的更大进步、耦合联用, 在实时反应条件下以前所未有的原子/分子尺度水平建立更准确的构效关系, 增强对电催化原理的认识进行了展望.
魏杰, 陈微, 周达, 蔡俊, 陈艳霞. 结构明确的Pt基电极在温和电化学条件下的表面重构[J]. 催化学报, 2022, 43(11): 2792-2801.
Jie Wei, Wei Chen, Da Zhou, Jun Cai, Yan-Xia Chen. Restructuring of well-defined Pt-based electrode surfaces under mild electrochemical conditions[J]. Chinese Journal of Catalysis, 2022, 43(11): 2792-2801.
Fig. 1. Potential-induced structural changes of Pt(111) electrodes in the potential region between H-UPD (0.05 VRHE) and surface oxide formation (0.95 VRHE) revealed using in situ surface X-ray scattering. Reprinted with permission from Ref. [37]. Copyright 2016, American Chemical Society.
Fig. 2. (a-c) In situ constant current STM images of the as-prepared Pt(332) electrode at 0.1 VRHE in a N2-saturated sulfuric acid solution. Reprinted with permission from Ref. [34]. Copyright 2018, American Chemical Society. (d) Cyclic voltammograms (CVs) measured on Pt(553) showing the first (red line) and second cycles (black line) after holding the electrode at -0.2 VRHE for 60 s. Reprinted with permission from Ref. [36]. Copyright 2019, American Chemical Society. The author(s) and J. Phys. Chem. Lett., published by the American Chemical Society under the terms of the Creative Commons CC BY license (https://creativecommons.org/licenses/by-nc-nd/4.0/). (e) Contour of the corrugation along the dotted line marked at the upper end of panel (b). Reprinted with permission from Ref. [34]. Copyright 2018, American Chemical Society. (f) Steady-state CVs of the Pt(332) electrode in the N2-saturated sulfuric acid solution; inset shows a spherical model of a perfect Pt(332) surface in top and side views. Reprinted with permission from Ref. [34]. Copyright 2018, American Chemical Society.
Fig. 3. (a) Some representative i-E curves for HER (NS and PS indicate negative and positive scans, respectively) on Pt(111) in a N2-saturated sulfuric acid solution from -0.1 to 0.65 VRHE: right after flame annealing (black line), first (red line), second (blue line). (b) The corresponding CVs of the Pt(111)-electrolyte interface recorded after HER scans, as described in Fig. 2(a). (c) Schematic of HER-induced H uptake at defect sites on Pt(111), which increased the HER activity. Reprinted with permission from Ref. [10]. Copyright 2021, AIP publishing.
Fig. 4. In situ constant current STM images of the as-prepared Pt(332) surface at 0.1 VRHE in a CO-saturated sulfuric acid solution (a), and the corresponding close-up STM images (b). High-resolution EC-STM image (c) and ball model illustrating the spatial structure (d) of CO adsorbed on Pt(332). Reprinted with permission from Ref. [34]. Copyright 2018, American Chemical Society.
Fig. 5. STM images of Pt(111) (a,b) and Pt(20, 19, 19) (d,e) at 0.55 VRHE in a CO-saturated perchloric acid solution before potential cycling (a,d) and after 30 potential cycles (b,e). (c) Corresponding CVs of Pt(111) in the CO-saturated perchloric acid solution. (f) Corresponding CVs of Pt(111) in a N2-saturated perchloric acid solution. Reprinted with permission from Ref. [16]. Copyright 2013, American Chemical Society.
Fig. 6. STM images of the as-prepared bare Ru(0001) surface (a) and as-prepared 0.32 ML of Pt-modified Ru(0001) surface (b). STM images of the same electrode collected after potential cycling up to 0.9 VRHE (c) and 1.05 VRHE (d) in a CO-saturated solution. (e) A close inspection of the potential-induced surface restructuring of the 0.28 ML of as-prepared Pt deposited on Ru(0001) after cycling potential up to 0.9 VRHE and 1.05 VRHE in a CO-saturated solution, affording new, highly active sites and enhanced CO oxidation activity. (f) CV of the Ru(0001) electrode in a sulfuric acid solution with an increased upper-potential limit. (g) CV of Ru(0001) (black line), 0.32 ML of Pt/Ru(0001) (blue line), and 0.40 ML of Pt/Ru(0001) (red line) in the sulfuric acid solution. Reprinted with permission from Ref. [60]. Copyright 2014, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 7. (a) Sequences of video-STM images (6 × 6 nm2) at 0.55 VRHE showing step fluctuations and defect formation/annihilation at steps on Pt(111). (b) Image sequences of Pt(111) at 0.55 VRHE showing the slow diffusion of defects (motion is indicated by arrows) in the highly dynamic, apparent (1 × 1) CO adlayer. Electrolyte: CO-saturated 0.1 mol/L H2SO4. Reprinted with permission from Ref. [35]. Copyright 2020, Royal Society of Chemistry.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[9] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[10] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[11] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[13] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[14] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[15] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||