催化学报 ›› 2025, Vol. 71: 114-127.DOI: 10.1016/S1872-2067(24)60230-5

• 论文 • 上一篇    下一篇

Fe-O-Ni原子桥键调控的电子传输路径构筑及其高效CO2还原性能研究

许梦阳a, 常冰清a, 李金择b,*(), 王会琴c,*(), 霍鹏伟a,*()   

  1. a江苏大学化学与化工学院, 绿色化学与化工技术研究所, 江苏镇江 212013
    b中建中环新能源有限公司, 江苏南京 210012
    c江苏大学能源与动力工程学院, 江苏镇江 212013
  • 收稿日期:2024-12-27 接受日期:2025-01-06 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: bbun315@163.com (李金择), hqwang@ujs.edu.cn (王会琴), huopw@ujs.edu.cn (霍鹏伟).
  • 基金资助:
    国家自然科学基金委员会(22078131);江苏省卓越博士后计划(2023ZB299);江苏省自然科学基金(BK20230163);中国博士后科学基金会(2023TQ0381)

Designed electron transport path via Fe-O-Ni atomic bond for high CO2 reduction

Mengyang Xua, Bingqing Changa, Jinze Lib,*(), Huiqin Wangc,*(), Pengwei Huoa,*()   

  1. aInstitute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu,China
    bChina Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, Jiangsu, China
    cSchool of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2024-12-27 Accepted:2025-01-06 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: bbun315@163.com (J. Li), hqwang@ujs.edu.cn (H. Wang),huopw@ujs.edu.cn (P. Huo).
  • Supported by:
    National Natural Science Foundation of China(22078131);Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB299);Jiangsu Provincial Founds for Young Scholars(BK20230163);China Postdoctoral Science Foundation(2023TQ0381)

摘要:

二氧化碳(CO2)减排是碳中和的重要组成部分, 将CO2转化为有价值的化学品和燃料, 是应对能源挑战与气候变化的关键策略之一. 本文旨在通过人工光合作用减少CO2温室气体排放, 同时缓解能源危机. 然而, 传统催化剂由于活性位点、尺寸效应和扩散速率等因素的限制, 导致光生电荷利用效率较差. 因此, 开发具有活性位点密集、易接触且活性高的催化剂是提高光催化效率的核心问题. 超薄金属有机框架(MOFs)是由高度密集的不饱和金属节点和有机配体桥接形成独特的无机-有机混合型薄层结构, 具有比表面积大、易于功能化调控等特性. 因此, 本文拟以超薄MOFs为催化剂, 通过定制化设计增强其对CO2的吸附能力和选择性催化活化性能.
基于同源有机配体, 本文构建了具有原子传输通道的微组装S型异质结构(Fe3Ni-MOF), 以解决传统单金属MOFs材料在光催化还原CO2中面临的吸附活化能力差, 造成低CO2转化效率的问题. 采用超声辅助法制备的具有双分子层结构的2D Ni-MOF, 与原始的花球状聚集体相比, 其能够充分暴露两侧的不饱和金属节点. Fe-MOF纳米颗粒因其同源配体的作用, 在MOF-on-MOF界面间形成Fe-O-Ni原子异质结构. 透射电子显微镜、原子力显微镜和开尔文探针力显微镜揭示了2D Ni-MOF的双分子层结构以及Fe3Ni-MOF的微组装特性有助于缩短电子传输距离, 提升传质效率. X射线光电子能谱、电子自旋共振、拉曼光谱及差分电荷密度计算表明, Fe3Ni-MOF中形成了稳定的Ni-O-Fe化学键, 促进了界面电场的形成, 有效促进了载流子分离和定向传输. Fe3Ni-MOF的催化性能显著优于单组分催化剂, 其中CO产量达到了63.5 μmol g-1, 分别是单体2D Ni-MOF和Fe-MOF的20倍和3.2倍; 同时, 其CO选择性达到96.4%并展现出较好的稳定性. 与体相异质结相比, 超薄二维结构和纳米颗粒组成的微组装结构具有更多的界面接触点, 极大地提高了物质和能量交换效率, 使得该复合材料具有较好的光催化还原CO2性能. 密度泛函理论计算、瞬态荧光、原位X射线光电子能谱和原位傅里叶变换红外光谱表明, 具有Fe-O-Ni定向电子传输通道的微组装S型异质结构可以显著降低反应活化能垒; 同时, Fe作为催化活性位点, 在催化过程中Fe3+→Fe2+的可逆转变能有效延长电子寿命, 提高光催化活性.
综上, 本文采用同源配体策略构建具有原子传输通道的MOF-on-MOF微组装S型异质结构, 其定向电子传输通道、微组装结构和S型内置电场协同促进高效选择性光催化还原CO2. 该策略为解决单一金属MOFs光催化剂活性较低提供了一种新的方案.

关键词: 超薄二维结构, S型电子转移, 原子传输通道, 光催化还原CO2, MOF-on-MOF

Abstract:

The assembly of different Metal organic framework (MOFs) into hybrid heterostructures has proven to be a promising strategy that can effectively break through the limited regulatory capacity of single metal sites. Here, an S-scheme heterostructure (Fe3Ni-MOF) based on homologous ligands (1,4-phthalic acid) of ultra-thin Ni-MOF and Fe-MOF nanoparticles with directional electron transport channels, was developed and used it for photoreduction of CO2. Under the S-scheme electric field mechanism, the photogenerated carrier can achieve efficient directional separation through Fe-O-Ni atomic bond, which significantly reduces the energy barrier of the rate-determining step. Results show that the performance of Fe3Ni-MOF (63.5 μmol g-1) was 20 and 3.2 times higher than that of Ni-MOF and Fe-MOF, respectively, and exhibits excellent CO selectivity (96.4%) and stability. Transmission electron microscopy and atomic force microscopy revealed the two-molecular-layers structure of Ni-MOF and the micro-assembly structure of Fe3Ni-MOF, which can shorten the electron transport distance and increase the molecular mass transfer rate. X-ray photoelectron spectroscopy, electron spin resonance and electron density difference calculations reveal that interfacial electric fields and atomic bonds work together to promote directional carrier separation, resulting in the accumulation of holes on Ni-MOF and electrons on Fe-MOF. The Gibbs free energy calculation and in-situ Fourier transformed infrared spectroscopy validate that the micro-assembled S-scheme heterostructures with directional electron transport channels can significantly reduce the activation energy barrier of the reaction. This study not only proves the feasibility of constructing MOFs S-scheme heterostructures using homologous ligands, but also provides a new way to overcome the limitations of monometallic MOFs. This strategy is expected to open up a new avenue to design efficient photocatalysts.

Key words: Ultra-thin 2D structure, S-scheme electron transfer, Atomic transfer channel, Photocatalytic CO2 conversion, MOF-on-MOF