催化学报 ›› 2025, Vol. 71: 70-113.DOI: 10.1016/S1872-2067(24)60266-4

• 综述 • 上一篇    下一篇

CeO2基复合光催化剂的化学调控及其环境与能源应用

Anees A. Ansaria,*(), 吕锐婵b,*(), 盖世丽c, 杨飘萍c   

  1. a沙特国王大学阿卜杜拉国王纳米技术研究所, 利雅得, 沙特阿拉伯
    b西安电子科技大学机电工程学院, 高性能电子设备机电一体化制造国家重点实验室, 陕西西安 710071, 中国
    c哈尔滨工程大学材料科学与化学工程学院, 超轻材料与表面技术教育部重点实验室, 黑龙江哈尔滨 150001, 中国
  • 收稿日期:2024-12-07 接受日期:2025-02-03 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: aneesahmad@ksu.edu.sa (A. A. Ansari), rclv@xidian.edu.cn (吕锐婵).
  • 基金资助:
    国家自然科学基金(82472104);国家自然科学基金(U24B2053);陕西省重点核心技术研发(2024QY2-GJHX-03);中央高校基本研究经费

Chemistry of CeO2-derived nanocomposites photocatalysts for environment monitoring and energy conversion

Anees A. Ansaria,*(), Ruichan Lvb,*(), Shili Gaic, Piaoping Yangc   

  1. aKing Abdullah Institute for Nanotechnology, King Saud University, Riyadh-1451, Saudi Arabia
    bState Key Laboratory of Electromechanical Integrated Manufacturing of High-performance ElectronicEquipment, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, Shaanxi, China
    cKey Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2024-12-07 Accepted:2025-02-03 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: aneesahmad@ksu.edu.sa (A. A. Ansari), rclv@xidian.edu.cn (R. Lv).
  • About author:Prof. Anees A Ansari is a full professor and a distinguished researcher specializing in luminescent Ln3+ materials. With a remarkable h-index of 55, he has made significant contributions to the field of nanomaterials synthesis, focusing on the design, characterization, and emission efficiency of advanced luminescent materials. He has authored ground breaking research and reviews that have advanced the understanding of luminescent Ln3+ materials and actively shares his knowledge through scientific talks and workshops, inspiring the next generation of researchers. Dr. Ansari’s dedication to luminescent nanomaterial research and his exceptional academic and professional record position him as a leader in driving innovation and excellence in nanomaterial science.
  • Supported by:
    National Natural Science Foundation of China(82472104);National Natural Science Foundation of China(U24B2053);Key Core Technology Research and Development of Shaanxi(2024QY2-GJHX-03);Fundamental Research Funds for the Central Universities

摘要:

光催化技术因其经济可行, 环境友好的特性, 在能源转化与环境治理领域具有重要意义. CeO2的配位化学特性备受关注,其纳米复合材料展现出独特优势,包括光学活性、宽带隙(Eg)、可逆价态(Ce3+/4+)、丰富的缺陷结构、高存储氧能力、离子导电性和出色的耐化学性. 本文系统总结了合成方法、颗粒形态和晶体结构对提升CeO2基异质结(HHJ)光催化剂性能的影响机制, 旨在提高其光催化效率. 选择合适的合成方法和复合材料的形貌有利于抑制电子-空穴(e-h+)对的快速复合, 改善可见光吸收能力, 从而促使大量e-h+对参与反应, 提升光催化剂的活性. 现有的改性方法主要包括元素掺杂(金属/非金属掺杂), 构建异质结结构(窄/宽Eg半导体(SCD), 碳, 导电聚合物材料), 缺陷工程和多组分混合等. 这些方法通过提高氧物种的迁移率, 加快电荷转移, 增强可见光吸收能力, 并增加e-h+对的生成以及抑制电荷复合速率, 为理性设计高效CeO2基复合光催化剂提供了重要依据, 助力可持续发展。 本文还介绍了CeO2共轭复合材料在光催化氧化废水污染物(抗生素/有机染料/化学/制药), 重金属去除, 制氢, CO2还原和H2O分解等领域的应用进展; 最后, 探讨了CeO2基异质结光催化剂面临的挑战与机理瓶颈, 并展望了未来研究方向.

关键词: 光降解, 异质结, CeO2, 氧空位, 复合物

Abstract:

Photocatalysis is an important process in energy conversion and environmental usage because of its feasible, profitable, and environmentally safe benefits. Coordination chemistry of the CeO2 is gaining significant interest because its nanocomposites show unique characteristics namely optically active, wide bandgap (Eg), reversible valence states (Ce3+/4+), rich defect architectures, high O2 storage capability, ionic conductivity, and exceptional chemical resistance. Systematically summarized the importance of synthesis methods, particle morphology, and crystal structure aiming at how to heighten the efficacy of CeO2-derived hybrid heterojunction (HHJ) photocatalyst. Selection of an appropriate synthesis method and morphology of the composite materials are beneficial in inhibiting the rapid electron-hole (e-h+) recombination, improvement in visible light adsorption, and large generation of e-h+ pairs to accelerate the photocatalysts activities. Various modification approaches include elemental doping (metal/non-metal doping), heterojunction construction (lower/wide Eg semiconductors (SCD), carbon, conducting polymeric materials), imperfection engineering, and multicomponent hybrid composites. These methods assist as a valuable resource for the rational design of effective CeO2-based composite photocatalysts for sustainable development owing to the enhancement of oxygen species mobility, rapid charge transfer, maximum visible light captivation and slow down the charge recombination rate with increase photogeneration of e-h+ pairs. Also examines the advancements made in CeO2 conjugated hybrid composites in photo-oxidation of wastewater effluents (antibiotic/organic dyes/chemical/pharmaceutical), heavy metal removal, H2 production, CO2 reduction, and H2O splitting applications. Subsequently, the difficulties and fundamental ideas behind several heterojunction photocatalysts encountered by CeO2-based composites are examined, and future directions for their development are suggested.

Key words: Photodegradation, Heterojunction, CeO2, Oxygen vacancies, Composite