催化学报 ›› 2025, Vol. 71: 353-362.DOI: 10.1016/S1872-2067(24)60275-5

• 论文 • 上一篇    下一篇

构建内建电场可调的全固溶体S型异质结以实现高效光催化活性

岳诗雅a,1, 李荣a,b,*,1(), 魏政荣a, 高云a,*(), Karen Wilsonc, 陈绪兴a,*()   

  1. a湖北大学材料科学与工程学院, 功能材料绿色制备与应用教育部重点实验室, 湖北武汉 430062, 中国
    b湖北大学智能制造学院, 湖北武汉 430062, 中国
    c格里菲斯大学环境与科学学院催化与清洁能源研究中心, 昆士兰布里斯班, 澳大利亚
  • 收稿日期:2024-12-31 接受日期:2025-02-09 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: rli@hubu.edu.cn (李荣), gaoyun@hubu.edu.cn (高云), cxx0613@hubu.edu.cn (陈绪兴).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(21801071);国家自然科学基金(21902046);高等学校学科创新引智计划(D18025);湖北省自然科学基金(2018CFB171);湖北省教育厅(D20221001);中国科学院福建物质结构研究所结构化学国家重点实验室开放基金;湖北工程学院特色果蔬质量控制湖北省教育厅重点实验室开放资金(2023K003)

All solid-solution S-scheme heterojunction with adjustable internal electric field for highly efficient photocatalytic activity

Shiya Yuea,1, Rong Lia,b,*,1(), Zhengrong Weia, Yun Gaoa,*(), Karen Wilsonc, Xuxing Chena,*()   

  1. aMinistry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, Hubei, China
    bSchool of Intelligent Manufacturing, Hubei University, Wuhan 430062, Hubei, China
    cCentre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Brisbane, Queensland, 4222, Australia
  • Received:2024-12-31 Accepted:2025-02-09 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: rli@hubu.edu.cn (R. Li), gaoyun@hubu.edu.cn (Y. Gao), cxx0613@hubu.edu.cn (X. Chen).
  • About author:

    1Contributed to this work equally.

  • Supported by:
    National Natural Science Foundation of China(21801071);National Natural Science Foundation of China(21902046);Overseas Expertise Introduction Center for Discipline Innovation(D18025);Natural Science Foundation of Hubei Provincial(2018CFB171);Hubei Provincial Department of Education(D20221001);open foundation of the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences;Opening Fund of Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University(2023K003)

摘要:

自1972年发现“本多-藤岛效应”以来, 光催化技术在能源与环境领域展出了良好的应用前景, 如何开发一种高效的光催化剂是实现光催化应用的关键. S型异质结因其独特的光生载流子迁移路径、有效的光吸收能力和较高的氧化还原能力, 展现出良好的应用潜力. 尽管S型异质结实现了光吸收和氧化还原能力的协同优化. 然而, 如何进一步调控S型异质结的内建电场, 以实现光吸收、载流子分离和氧化还原能力三者的协同优化, 实现更高的光催化性能仍然是一个巨大的挑战.
基于连续固溶体的能带结构连续可调的特性, 本文以ZnxCd1-xS和Bi2MoyW1-yO6固溶体分别作为还原和氧化性半导体, 成功设计并构建了具有内建电场可调的0D/2D全固溶体S型异质结, 该全固溶体S型异质结实现了有效光吸收、快速光生载流子分离和高氧化还原能力的协同优化, 从而展现出优异的光催化降解乙烯的性能. 首先, 采用两步水热法制备了不同比例的Zn0.4Cd0.6S-Bi2Mo0.2W0.8O6 0D/2D全固溶体S型异质结, 并通过X-射线粉末衍射、紫外-可见光漫反射谱、傅里叶变换红外光谱和Raman光谱等表征对其结构进行了分析. 在可见光下, 10%的Zn0.4Cd0.6S量子点与Bi2Mo0.2W0.8O6单层复合构建的S型异质结光催化效率最高, 其降解C2H4的速率为150.60×10-3 min-1, 是纯Zn0.4Cd0.6S (9.10×10-3 min-1)的16.5倍, 纯Bi2Mo0.2W0.8O6 (2.80×10-3 min-1)的53.8倍. 实验结果表明, ZnxCd1-xS的光腐蚀得到了有效抑制, 这得益于该异质结独特的光生载流子S型迁移途径. 本文通过原位光照X-射线光电子能谱、光致发光光谱、时间分辨光致发光光谱、瞬态吸收光谱和电子顺磁共振波谱表征进一步证实了光生载流子的S型转移路径. 原位漫反射傅里叶变换红外光谱进一步揭示了C2H4降解的反应途径和机理, 通过产生的超氧负离子和羟基自由基将C2H4氧化为*COOH, 最终分解成二氧化碳和水. 室温水果保鲜实验证明了在光照条件下, 含催化剂的体系中的水果在15天后仍然能保持相对新鲜状态, 这表明该光催化剂在室温下果蔬保鲜存储中展现出良好的应用前景.
综上, 本文基于光催化的基本原理, 设计并制备了新型全固溶体S型异质结, 实现了光吸收、氧化还原能力和载流子分离的协同优化, 进一步提高了S型异质结的光催化性能, 极大推进了光催化技术应用于果蔬保鲜的进程.

关键词: 光催化, S型异质结, 固溶体, 内建电场, 乙烯

Abstract:

Developing an efficient photocatalyst is the key to realize the practical application of photocatalysis. The S-scheme heterojunction has great potential in photocatalysis due to its unique charge-carrier migration pathway, effective light absorption and high redox capacity. However, further enhancing the built-in electric field of the S-scheme, accelerating carrier separation, and achieving higher photocatalytic performance remain unresolved challenges. Herein, based on the continuously adjustable band structure of continuous solid-solution, a novel 0D/2D all solid-solution S-scheme heterojunction with adjustable internal electric field was designed and fabricated by employing a solid-solution of ZnxCd1-xS and Bi2MoyW1-yO6 respectively as reduction and oxidation semiconductors. The synergistic optimization of effective light absorption, fast photogenerated carrier separation, and high redox potential leads can be tuned to promote photocatalytic activity. Under visible light, the S-scheme system constructed by Zn0.4Cd0.6S quantum dot (QDs) and Bi2Mo0.2W0.8O6 monolayer exhibits a high rate for photocatalytic degradation C2H4 (150.6 × 10-3 min-1), which is 16.5 times higher than that of pure Zn0.4Cd0.6S (9.1 × 10-3 min-1) and 53.8 times higher than pure Bi2Mo0.2W0.8O6 (2.8 × 10-3 min-1). Due to the unique charge-carrier migration pathway, photo-corrosion of ZnxCd1-xS is further inhibited simultaneously. In-situ irradiation X-ray photoelectron spectroscopy, photoluminescence spectroscopy, time-resolved photoluminescence, transient absorption spectroscopy and electron paramagnetic resonance provide compelling evidence for interfacial charge transfer via S-scheme pathways, while in-situ diffuse reflectance infrared Fourier transform spectroscopy identifies the reaction pathway for C2H4 degradation. This novel S-scheme photocatalysts demonstrates excellent performance and potential for the practical application of the fruits and vegetables preservation at room temperatures.

Key words: Photocatalysis, S-scheme, Solid-solution, Internal electric field, Ethylene