催化学报 ›› 2025, Vol. 70: 260-271.DOI: 10.1016/S1872-2067(24)60250-0

• 论文 • 上一篇    下一篇

曲率结构解锁超高效非金属碳催化剂: 乙炔氢氯化催化性能超黄金催化剂

魏抒豪a, 陈烨b, 邱一洋a, 孔薇a, 林迪a, 李佳容a, 蓝国钧a, 贾毅a,c, 孙秀成a, 程载哲a, 刘健d, 胡培君b,e,*(), 李瑛a,*()   

  1. a浙江工业大学化工学院, 工业催化研究所, 浙江杭州 310014, 中国
    b上海科技大学物理科学与技术学院, 上海 201210, 中国
    c浙江工业大学莫干山研究院, 浙江德清 313200, 中国
    d内蒙古大学化学化工学院, 内蒙古呼和浩特 010021, 中国
    e贝尔法斯特女王大学化学与化学工程学院, 贝尔法斯特, 英国
  • 收稿日期:2025-01-12 接受日期:2025-02-10 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: liying@zjut.edu.cn (李瑛),p.hu@qub.ac.uk (胡培君).
  • 基金资助:
    国家重点研发项目(2024YFC3907904);2019年“稀土、煤化工”项目资助和内蒙古自治区科技攻关项目(2019ZD017)

The curvature structure unlocks an ultra-efficient metal-free carbon catalyst surpassing gold for acetylene hydrochlorination

Shuhao Weia, Ye Chenb, Yiyang Qiua, Wei Konga, Di Lina, Jiarong Lia, Guojun Lana, Yi Jiaa,c, Xiucheng Suna, Zaizhe Chenga, Jian Liud, P. Hub,e,*(), Ying Lia,*()   

  1. aInstitute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    bSchool of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
    cMoganshan Institute, Zhejiang University of Technology, Deqing 313200, Zhejiang, China
    dCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
    eSchool of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, UK
  • Received:2025-01-12 Accepted:2025-02-10 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: liying@zjut.edu.cn (Y. Li),p.hu@qub.ac.uk (P. Hu).
  • Supported by:
    National Key Research and Development Program of China(2024YFC3907904);2019 “Rare Earth and Coal Chemical Industry” Key Science and Technology Project of Inner Mongolia Autonomous Region(2019ZD017)

摘要:

聚氯乙烯(PVC)是由氯乙烯(VCM)聚合而成的, 是我国产能最大的高分子材料之一. 目前, 工业上广泛采用活性炭负载氯化汞催化剂用于生产氯乙烯. 随着国际限汞政策的逐步实施, 开发新型无汞催化剂迫在眉睫. 目前能替代汞催化剂的有金、钌、铂等贵金属催化剂和铜、铋等非贵催化剂系列, 但这些催化剂都存在成本高、易烧结、金属流失等问题. 而非金属碳催化剂因其绿色环保、成本低廉且无金属烧结和流失等优势, 成为最具潜力的无汞催化剂之一. 尽管研究人员已经通过掺杂杂原子和构造缺陷结构等各种策略有效提高了碳催化剂的乙炔氢氯化性能, 但与目前报道的性能最好的黄金催化剂相比, 其在活性上仍存在较大差距. 我们通过对纳米碳催化剂的表面曲率结构调控, 大幅度提高了碳催化剂的乙炔氢氯化活性, 并通过理论计算和实验研究, 揭示了碳催化剂的高曲率缺陷结构对乙炔氢氯化催化性能的增强机制.

首先通过理论计算研究了氮掺杂石墨烯的平面结构、凸面曲率结构和凹面曲率结构对乙炔及氯化氢的吸附行为, 发现当石墨烯形成曲率结构后, 会在曲率尖端活性位点周围形成一个尖端增强的局部电场, 显著增强了碳催化剂对乙炔分子的吸附, 并促进氯化氢的活化, 从而大幅度降低乙炔氢氯化反应的能垒, 促进反应的进行. 本文以聚丙烯腈为炭源, 通过纳米氧化硅模板及两步控氧炭化的策略实现了高曲率富缺陷碳基催化剂(HCDC)的精准可控制备. 与无曲率富缺陷碳(DC)催化剂相比, HCDC表现出极佳的催化性能. 在反应温度为220 °C, 乙炔空速为300 h-1, 氯化氢和乙炔进料比为1.2的反应条件下, HCDC碳催化剂上的乙炔转化率高达90%, 而普通DC碳催化剂的乙炔转化率只有30%左右. 动力学研究发现, 在高曲率的碳催化剂表面, 乙炔氢氯化遵循ER机理, 乙炔的反应级数为-0.16, 反应活化能仅为31.4 kJ mol-1. 通过电镜、氮气物理吸附、光电子能谱、拉曼等表征手段对HCDC和DC碳催化剂的理化性质进行了解析, 发现除曲率结构不同外, 两者具有相似的氮掺杂和缺陷含量, 排除了氮掺杂和缺陷含量对活性的影响, 进一步通过程序升温脱附表征发现, 具有一定曲率结构的HCDC催化剂的乙炔吸附量是DC碳催化剂吸附量的98倍, 进一步验证了理论计算的结果. HCDC的催化活性是目前文献报道的活性最高的非金属碳催化剂, 在相同条件下, 乙炔转化率达到了2.5%Au/Carbon催化剂的1.8倍.

综上, 这项概念验证研究揭示了具有纳米曲率结构的无金属碳催化剂性能卓越的基础机制, 并提出了一种简单、环保的方法来大规模生产具有精确可控纳米结构的碳材料. 该研究凸显了无金属碳催化剂在乙炔氢氯化反应及相关多相催化反应中实现商业化的潜力.

关键词: 非金属, 碳催化剂, 曲率, 乙炔氢氯化, 碳催化

Abstract:

Metal-free carbon catalysts have garnered significant attention since their inception. Despite substantial advancements, including widely adopted strategies such as heteroatom doping and defect engineering, their catalytic performance remains inferior to that of metal-based catalysts. In this study, we have predicted and demonstrated that the curvature of carbon plays a pivotal role in the adsorption of acetylene and the overall catalytic performance. First-principles calculations suggest that a tip-enhanced local electric field at the defect site on the curved carbon catalyst enhances the reaction kinetics for acetylene hydrochlorination. The experimental results highlight the structural advantages of the curved defect site, revealing that high-curvature defective carbon (HCDC) demonstrates an adsorption capacity for acetylene that is almost two orders of magnitude higher than that of defective carbon. Notably, HCDC achieves an acetylene conversion of up to 90% at 220 °C under a gas hourly space velocity of 300 h-1, significantly surpassing the performance of the benchmark 0.25% Au/AC catalyst. This proof-of-concept study reveals the fundamental mechanisms driving the superior performance of carbon catalysts with curved nanostructures and presents a straightforward, environmentally friendly method for large-scale production of carbon materials with precisely controlled nanostructures. It highlights the potential for commercializing metal-free carbon catalysts in acetylene hydrochlorination and related heterogenous catalytic reactions.

Key words: Metal-free, Carbon catalyst, Curvature, Acetylene hydrochlorination, Carbocatalysis