催化学报 ›› 2021, Vol. 42 ›› Issue (12): 2296-2305.DOI: 10.1016/S1872-2067(21)63804-4

• 论文 • 上一篇    下一篇

氮掺杂碳包埋钴纳米粒子电催化合成过氧化氢

Basil Sabri Rawaha,b, 李文震a,*()   

  1. a爱荷华州立大学, 化学和生物工程系, 生物可再生能源研究实验室, 艾姆斯, 美国
    b吉达大学化学与材料工程学院, 吉达, 沙特阿拉伯
  • 收稿日期:2021-01-14 接受日期:2021-01-14 出版日期:2021-12-18 发布日期:2021-04-25
  • 通讯作者: 李文震

Electrocatalytic generation of hydrogen peroxide on cobalt nanoparticles embedded in nitrogen-doped carbon

Basil Sabri Rawaha,b, Wenzhen Lia,*()   

  1. aChemical and Biological Engineering Department, Biorenewables Research Laboratory, Iowa State University, Ames, IA 50011, USA
    bChemical and Biological Engineering Department, University of Jeddah, Jeddah 23890, Saudi Arabia
  • Received:2021-01-14 Accepted:2021-01-14 Online:2021-12-18 Published:2021-04-25
  • Contact: Wenzhen Li
  • About author:* Tel: +1-515-294-4582; E-mail: wzli@iastate.edu

摘要:

电催化还原氧是一种新兴的可持续生产过氧化氢(H2O2)的合成技术, 寻找低成本、高活性和高选择性的电催化剂是该技术实际应用的关键. 钴氮掺杂的碳材料因含有钴氮(Co-Nx)催化活性位, 成为一类新兴的可促进H2O2电化学合成的材料.

本文采用低能耗干式球磨外加控制热解的方法来制备包含许多Co-Nx结构的钴氮掺杂碳材料. 该方法使用材料廉价, 即将醋酸钴、2-甲基咪唑和Ketjenblack EC-600JD高纯度且导电的碳黑分别作为金属、氮和碳的前体. 在酸性介质中的电化学测试结果表明, 该材料的氧还原反应电流密度明显增加, 同时起始电位向正方向移动. 该催化剂在较大电位范围内对H2O2的选择性约为90%. H2O2整体电解实验表明, H2O2产率达到100 mmol gcat-1 h-1, H2O2法拉第效率达到85% (0.3 V vs. RHE条件下2 h). 耐久性测试(在0.3 V vs. RHE条件下6 h)表明, 催化剂表现出相对稳定的性能, 且在整个测试循环中, 法拉第效率达到约85%, 表明催化剂在实际应用中具有良好的耐久性. 催化剂表现出较高的电催化合成H2O2活性和选择性可能是由于形成了Co-Nx活性位, 以及酸性环境和应用电位等其它因素的影响.

关键词: 过氧化氢, 双电子氧还原, 碳催化剂, 电催化

Abstract:

Electrocatalytic reduction of oxygen is a growing synthetic technique for the sustainable production of hydrogen peroxide (H2O2). The current challenges concern seeking low-cost, highly active, and selective electrocatalysts. Cobalt-nitrogen-doped carbon containing catalytically active cobalt-nitrogen (Co-Nx) sites is an emerging class of materials that can promote the electrochemical generation of H2O2. Here, we report a straightforward method for the preparation of cobalt-nitrogen-doped carbon composed of a number of Co-Nx moieties using low-energy dry-state ball milling, followed by controlled pyrolysis. This scalable method uses inexpensive materials containing cobalt acetate, 2-methylimidazole, and Ketjenblack EC-600JD as the metal, nitrogen, and carbon precursors, respectively. Electrochemical measurements in an acidic medium show the present material exhibits a significant increase in the oxygen reduction reaction current density, accompanied by shifting the onset potential into the positive direction. The current catalyst has also demonstrated an approximate 90 % selectivity towards H2O2 across a wide range of potential. The H2O2 production rate, as measured by H2O2 bulk electrolysis, has reached 100 mmol gcat.-1 h-1 with high H2O2 faradaic efficiency close to 85% (for 2 h at 0.3 V vs. RHE). Lastly, the catalyst durability has been tested (for 6 h at 0.3 V vs. RHE). The catalyst has shown relatively consistent performance, while the overall faradic efficiency reaches approximate 85% throughout the test cycle indicating the promising catalyst durability for practical applications. The formed Co-Nx moieties, along with other parameters, including the acidic environment and the applied potential, likely are the primary reasons for such high activity and selectivity to H2O2 production.

Key words: Hydrogen peroxide, Two-electron oxygen reduction, Carbon catalyst, Electrocatalysis