催化学报 ›› 2025, Vol. 75: 125-136.DOI: 10.1016/S1872-2067(25)64661-4

• 论文 • 上一篇    下一篇

FeNC层稳定的L10-PtFe金属间纳米颗粒用于高效氧还原

余成文,1, 梁乐程,1, 穆张岩, 尹绍祺, 刘欲文*(), 陈胜利*()   

  1. 武汉大学化学与分子科学学院, 能源电化学基础实验室, 湖北武汉 430072
  • 收稿日期:2025-02-14 接受日期:2025-03-31 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: slchen@whu.edu.cn (陈胜利), ywliu@whu.edu.cn (刘欲文).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22332004);国家自然科学基金(21832004)

FeNC shell-stabilized L10-PtFe intermetallic nanoparticles for high-performance oxygen reduction

Yu Chengwen,1, Liang Lecheng,1, Mu Zhangyan, Yin Shaoqi, Liu Yuwen*(), Chen Shengli*()   

  1. Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2025-02-14 Accepted:2025-03-31 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: slchen@whu.edu.cn (S. Chen), ywliu@whu.edu.cn (Y. Liu).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22332004);National Natural Science Foundation of China(21832004)

摘要:

质子交换膜燃料电池(PEMFCs)作为低碳能源系统的核心组件, 其商业化应用仍面临阴极氧还原反应(ORR)动力学缓慢和铂基催化剂活性不足且耐久性差等瓶颈. 相比无序合金, 具有有序原子排列结构的铂基金属间化合物(Pt-IMCs)因其增强的晶格应变、电子配体效应(非标准术语,配体的电子效应?)和结构稳定性, 已被证明是有前景的ORR催化剂. 然而, Pt-IMCs的传统合成通常需高温处理以克服无序-有序相转变的热力学和动力学障碍, 但此过程易引发颗粒烧结并降低催化活性. 此外, 尽管过渡金属在有序相中相对稳定, 但在长期电化学服役过程中依然存在溶出问题. 因此, 开发兼具高有序度、小尺寸及高性能的Pt-IMCs仍面临持续性的挑战.

本文提出了一种将具有强锚定作用的氮掺杂碳负载金属(M-N-C)结构和保护包覆碳层相结合的策略, 制备了具有Fe-N4位点的碳层包覆型L10-PtFe金属间化合物催化剂(L10-PtFe@FeNC). 该催化剂兼具小尺寸和高有序度, 显著提升了ORR催化性能. 以碳载铂(Pt/C)为晶种, Fe-菲咯啉(Phen)配合物为前驱体, 通过冷冻干燥-高温热处理法制备了L10-PtFe@FeNC. Phen与Fe间强相互作用促进了Fe在Pt种子和载体上的均匀分布, 有利于高度有序L10-PtFe相的形成. Fe-Phen配合物热解生成的FeNC层有效抑制了高温处理或严苛工况条件下纳米颗粒的聚集和溶解, 使PtFe纳米颗粒保持小尺寸(3.59 nm). 相比之下, 同样具备调控颗粒粒径能力的氮掺杂碳(NC)包覆层和纯碳(C)包覆层与Fe的相互作用较弱, 致使高温条件下Fe在碳载体上分布不均, 从而导致有序度降低和相分离的PtFe IMC纳米颗粒. 所制催化剂中, L10-PtFe@FeNC展现出最优异的性能, 其质量活性(0.592 A mgPt-¹)是商业Pt/C的5倍, 且在30000次电势循环后仍保持68.2%的质量活性(商业Pt/C为45.3%). 稳定性测试结果表明, FeNC层在严苛条件下保持了结构完整性(厚度约0.6 nm), 显著抑制了纳米颗粒的团聚和溶解, 从而保障了催化剂的稳定性, 而NC和C层则被严重腐蚀, 几乎无法辨别. 密度泛函理计算表明, FeNC层与Pt表面之间的强相互作用是催化剂稳定性增强的关键, 该界面协同效应同时提升了保护层的抗腐蚀性和PtFe纳米颗粒的结构稳定性.

综上, 本研究以L10-PtFe@FeNC为概念验证, 表明了M-N-C复合碳包覆策略能够协同实现Pt基金属间化合物的高度有序化以及纳米颗粒尺寸的精准调控, 并揭示了碳包覆合金结构的双向稳定机制, 为开发高活性、长寿命的燃料电池阴极催化剂提供了创新的设计思路.

关键词: 氧还原反应, 金属间PtFe, 表面包覆, FeNC, 耐久性

Abstract:

In the pursuit of high-performance proton exchange membrane fuel cells (PEMFCs), obtaining durable Pt-based intermetallic catalysts with small particle sizes for oxygen reduction reaction (ORR) stands as a crucial yet challenging topic. Herein, we propose an idea of catalyst design utilizing Fe-phenanthroline (Phen) complex as precursor to integrate metal-nitrogen-carbon (M-N-C) with the strong anchoring effect into carbon shells, synthesizing highly ordered and small-sized (3.59 nm) PtFe intermetallic catalyst coated with iron-nitrogen-carbon (FeNC) shells (L10-PtFe@FeNC). The strong Fe-Phen interaction ensures the uniform dispersion of Fe species on Pt seeds so as to form protective shells suppressing the agglomeration and dissolution of PtFe nanoparticles (NPs) under the high-temperature annealing or harsh operational conditions. It exhibits excellent mass activity (MA) that is about five-fold increase compared to the commercial Pt/C, as well as the significantly improved MA retention after 30,000 potential cycles (68.2% vs. 45.3%). Nitrogen-doped carbon (NC) shells and pure carbon (C) shells are used as comparison to demonstrate the advantages of FeNC shells. Durability test results show that NC and C shells obviously degrade after potential cycles, while well-preserved FeNC shells guarantee catalyst stability. Theoretical calculations reveal that the strong binding between FeNC shells and the Pt surface enhances the stability of both the nanoparticles and the FeNC shells.

Key words: Oxygen reduction reaction, Intermetallic PtFe, Surface coating, Iron-nitrogen-carbon, Durability