催化学报 ›› 2025, Vol. 74: 264-278.DOI: 10.1016/S1872-2067(25)64669-9

• 论文 • 上一篇    下一篇

W掺杂调控Jahn-Teller效应构建高稳定性W-CoMnP析氢电催化剂

安博涵a,b, 李鑫a,b, 刘威龙a,b, 董继鹏a,b, 边锐超a,b, 张璐瑶a,b, 李宁a,b, 高旸钦a,b, 戈磊a,b,*()   

  1. a中国石油大学(北京)新能源与材料学院重油加工国家重点实验室, 北京 102249
    b中国石油大学(北京)新能源与材料学院材料科学与工程系, 北京 102249
  • 收稿日期:2025-01-21 接受日期:2025-02-06 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: gelei@cup.edu.cn, gelei08@sina.com (戈磊).
  • 基金资助:
    国家自然科学基金(52473327);国家自然科学基金(51572295);国家自然科学基金(21273285);国家重点研发计划(2021YFA1501300);国家重点研发计划(2019YFC1907602)

Developing a stable and high-performance W-CoMnP electrocatalyst by mitigating the Jahn-Teller effect through W doping strategy

Bohan Ana,b, Xin Lia,b, Weilong Liua,b, Jipeng Donga,b, Ruichao Biana,b, Luyao Zhanga,b, Ning Lia,b, Yangqin Gaoa,b, Lei Gea,b,*()   

  1. aState Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
    bDepartment of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
  • Received:2025-01-21 Accepted:2025-02-06 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: gelei08@sina.com, gelei@cup.edu.cn (L. Ge).
  • Supported by:
    National Natural Science Foundation of China(52473327);National Natural Science Foundation of China(51572295);National Natural Science Foundation of China(21273285);National Key R&D Program of China(2021YFA1501300);National Key R&D Program of China(2019YFC1907602)

摘要:

近年来, 全球能源危机和碳排放问题日益严峻, 氢燃料因其高能量密度(140 MJ/kg)和零碳排放特性, 被视为替代化石燃料的最佳选择. 其中, 通过电化学水分解制备的绿氢被认为是最环保、最可持续的制氢方式. 然而, 该过程涉及两个半反应, 即析氢反应(HER)和析氧反应(OER), 其中OER反应由于其缓慢的动力学过程, 成为限制能量转换效率的关键瓶颈. 这主要是因为OER涉及四步质子耦合电子转移, 使其反应动力学受限. 通过实验数据和密度泛函理论(DFT)计算的共同证实, 双金属磷化物纳米团簇材料在较高的电子密度下表现出显著的异质结行为.

高效金属磷化物电催化剂的电子调制特性可用于调节OER性能. 然而, 提高整体水分解性能仍然是一项具有挑战性的任务. 锰基材料受姜-泰勒(Jahn-Teller)效应影响, 发生Mn3+的自发歧化(2Mn3+ → Mn2+ + Mn4+)和Mn2+的溶解, 导致活性降低. 本文采用独特的了W掺杂策略来抑制这种影响. 外部首先采用简单的无模板方法制备钴基和锰基前驱体, 然后在合成过渡双金属磷化物时进行W掺杂. 最终获得了W掺杂的双金属磷化物(表示为W-CoMnP). 这种调节深刻影响了W-CoMnP的电子结构, 同时也提高了催化剂的性能. 具体来说, 这种调节导致材料基质中形成配位不饱和的Co和Mn原子, 而这些原子又成为氧分子捕获的关键位点, 促进O-O键的有利合成, 这是OER中的关键步骤, 随后, 被释放的O*原子被嵌入W-CoMnP晶格中的Co原子捕获. 通过与相邻的Co原子配位, 被捕获的O*原子表现出活性Co催化中心, 特别是在较高的自旋电子态下. Bader电荷分析了这些现象, 表明在整个OER过程中, Co催化中心逐渐向更高的氧化态移动. 从碱性溶液中选择性捕获OOH*中间体归因于存在可容纳不成对自旋电子的低能3d轨道. 在平衡CoNi基催化剂与Mn基催化剂的过程中, Mn基催化剂具有自身的多种优势.

综上所述, W-CoMnP材料表现出优异的HER和OER性能, 过电位低至95 mV (η10 HER)和225 mV(η50 OER), 并且可以在1.52 V电压下实现整体水分解, 同时保持24 h的稳定循环. 为了实现商业应用, W-CoMnP被整合到阴离子交换膜(AEM)电解水装置中, 在环境温度条件下实现了连续稳定的氢气生产. 这为未来开发AEM电解水装置的催化剂提供了一种有前途的策略.

关键词: 双金属磷化物, 密度泛函理论计算, 姜-泰勒效应, W掺杂, 阴离子交换膜电解水装置

Abstract:

Manganese-based materials are influenced by the Jahn-Teller effect, causing the spontaneous dismutation of Mn3+ (2Mn3+ → Mn2+ + Mn4+) and the dissolution of Mn2+, which often results in diminished activity. This study uniquely employs a W doping strategy to suppress this effect. Externally, a simple template-free method was initially used to prepare cobalt- and manganese-based precursors, followed by a W doping process during the synthesis of transition bimetallic phosphides. Ultimately, W-doped bimetallic phosphides (W-CoMnP) were obtained. The W-CoMnP material demonstrates excellent HER and OER performance with low overpotentials of 95 mV (η₁₀ HER) and 225 mV (η₅₀ OER), and can achieve overall water splitting at a voltage of 1.52 V while maintaining stable cycling for 24 h. To enable commercial application, W-CoMnP was incorporated into an anion exchange membrane (AEM) electrolysis water device, demonstrating continuous and stable hydrogen production under ambient temperature conditions. This study offers a promising strategy for the future development of catalysts for AEM electrolysis water devices.

Key words: Bimetallic phosphide, Density functional theory calculation, Jiang-Taylor effect, W doping, Anion exchange membrane water electrolysis device