催化学报 ›› 2025, Vol. 73: 368-383.DOI: 10.1016/S1872-2067(25)64683-3
• 论文 • 上一篇
Haneul Shima,1, Sumin Pyob,1, Avnish Kumara, Yasin Khania, Siyoung Q. Choib, Kanghee Choc, Jechan Leed, Young-Kwon Parka()
收稿日期:
2025-01-07
接受日期:
2025-03-21
出版日期:
2025-06-18
发布日期:
2025-06-12
通讯作者:
*电子信箱: catalica@uos.ac.kr (Y.-K. Park).
作者简介:
1共同第一作者.
Haneul Shima,1, Sumin Pyob,1, Avnish Kumara, Yasin Khania, Siyoung Q. Choib, Kanghee Choc, Jechan Leed, Young-Kwon Parka()
Received:
2025-01-07
Accepted:
2025-03-21
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: catalica@uos.ac.kr (Y.-K. Park).
About author:
1 Contributed equally to this work.
摘要: 本文系统研究了甲烷(CH4)、二氧化碳(CO2)和沼气(CH4+CO2)等C1气体对镓(Ga)改性ZSM-5催化剂催化热解聚塑料废弃物(聚丙烯)生成芳香烃的影响. 通过浸渍结合还原-氧化工艺制备了不同Ga负载量(0.5 wt%, 1 wt%, 3 wt%和5 wt%)的RO-GHZ催化剂, 结果表明: 在CH4气氛下, RO-GHZ(1)催化剂的BTEX(苯、甲苯、二甲苯和乙苯)产率最高(39.5 wt%). 相较于GHZ(1), 还原-氧化处理使Ga颗粒尺寸显著减小并扩散至ZSM-5孔道内, 形成高活性GaO+离子物种, 平衡了Lewis/Brönsted酸比例, 从而加速了芳构化反应. 进一步研究发现, RO-GHZ催化剂中Ga负载量增加会降低活性GaO+浓度, 导致BTEX产率下降. 值得注意的是, CO2对RO-GHZ(1)的抑制作用使其在沼气及纯CO2条件下的BTEX产率降低, 而GHZ(1)在CO2条件下则表现出最高产率. 同时, CO2与沼气体系通过焦炭部分氧化显著减少催化剂积碳. 该研究证实CH4与CO2等可持续C1气体可协同实现废塑料高效热解制备高值BTEX, 为绿色资源化提供了新思路.
Haneul Shim, Sumin Pyo, Avnish Kumar, Yasin Khani, Siyoung Q. Choi, Kanghee Cho, Jechan Lee, Young-Kwon Park. C1气体环境下Ga改性ZSM-5催化剂上塑料废弃物热解制芳烃的性能优化[J]. 催化学报, 2025, 73: 368-383.
Haneul Shim, Sumin Pyo, Avnish Kumar, Yasin Khani, Siyoung Q. Choi, Kanghee Cho, Jechan Lee, Young-Kwon Park. Improvement in the production of aromatics from pyrolysis of plastic waste over Ga-modified ZSM-5 catalyst under C1-gas environment[J]. Chinese Journal of Catalysis, 2025, 73: 368-383.
Sample | SBET (m2/g) | SMicro (m2/g) | SExternal (m2/g) | Pore volume (cm3/g) | Micropore volume (cm3/g) |
---|---|---|---|---|---|
HZ | 410 | 375 | 35 | 0.32 | 0.177 |
GHZ(1) | 389 | 350 | 39 | 0.31 | 0.165 |
RO-GHZ(1) | 406 | 371 | 35 | 0.32 | 0.176 |
RO-GHZ(3) | 403 | 363 | 40 | 0.34 | 0.171 |
RO-GHZ(5) | 383 | 350 | 33 | 0.31 | 0.161 |
Table 1 N2 sorption analysis of catalysts.
Sample | SBET (m2/g) | SMicro (m2/g) | SExternal (m2/g) | Pore volume (cm3/g) | Micropore volume (cm3/g) |
---|---|---|---|---|---|
HZ | 410 | 375 | 35 | 0.32 | 0.177 |
GHZ(1) | 389 | 350 | 39 | 0.31 | 0.165 |
RO-GHZ(1) | 406 | 371 | 35 | 0.32 | 0.176 |
RO-GHZ(3) | 403 | 363 | 40 | 0.34 | 0.171 |
RO-GHZ(5) | 383 | 350 | 33 | 0.31 | 0.161 |
Catalyst | Acidity (mmol/g) | ||
---|---|---|---|
Weak and medium | Strong | Total | |
HZ | 0.67 | 0.308 | 0.978 |
GHZ(1) | 0.673 | 0.23 | 0.903 |
RO-GHZ(1) | 0.692 | 0.269 | 0.961 |
RO-GHZ(3) | 0.707 | 0.241 | 0.948 |
RO-GHZ(5) | 0.72 | 0.209 | 0.929 |
Table 2 The amount of weak-medium and strong acid sites of HZ, GHZ(1) and RO-GHZ(x).
Catalyst | Acidity (mmol/g) | ||
---|---|---|---|
Weak and medium | Strong | Total | |
HZ | 0.67 | 0.308 | 0.978 |
GHZ(1) | 0.673 | 0.23 | 0.903 |
RO-GHZ(1) | 0.692 | 0.269 | 0.961 |
RO-GHZ(3) | 0.707 | 0.241 | 0.948 |
RO-GHZ(5) | 0.72 | 0.209 | 0.929 |
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | RO-GHZ(3) | RO-GHZ(5) |
---|---|---|---|---|---|
Lewis/ Brönsted | 0.489 | 0.648 | 0.687 | 0.745 | 0.764 |
Table 3 The ratio of Lewis acid sites to Br?nsted acid sites over the catalysts at 300 °C.
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | RO-GHZ(3) | RO-GHZ(5) |
---|---|---|---|---|---|
Lewis/ Brönsted | 0.489 | 0.648 | 0.687 | 0.745 | 0.764 |
Fig. 8. TEM, STEM, and EDS mapping images of HZ (a), GHZ(1) (b), R-GHZ(1) (c), RO-GHZ(1) (d), RO-GHZ(3) (e), and RO-GHZ(5) (f) catalysts. TEM and STEM images were taken with a Titan ETEM G2 instrument at 300 kV, and EDS analysis was carried out with Octane-T-Pluss II.
Catalysts | N2 | CH4 | Biogas | CO2 |
---|---|---|---|---|
HZ | 0.443 | 0.547 | 0.383 | - |
GHZ(1) | 0.415 | 0.455 | 0.375 | 0.414 |
RO-GHZ(1) | 0.439 | 0.576 | 0.383 | 0.381 |
Table 4 Coke detection present in spent HZ, GHZ(1), and RO-GHZ(1) catalysts in various environments (wt%).
Catalysts | N2 | CH4 | Biogas | CO2 |
---|---|---|---|---|
HZ | 0.443 | 0.547 | 0.383 | - |
GHZ(1) | 0.415 | 0.455 | 0.375 | 0.414 |
RO-GHZ(1) | 0.439 | 0.576 | 0.383 | 0.381 |
HZ (Vol%) | GHZ(1) (Vol%) | RO-GHZ(1) ( Vol%) | RO-GHZ(3) ( Vol%) | RO-GHZ(5) ( Vol%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CH4 | BG | N2 | CH4 | BG | CO2 | N2 | CH4 | BG | CO2 | CH4 | BG | CH4 | BG | |||||
H2 | 8.0 | 8.0 | 4.7 | 26.4 | 15.0 | 17.2 | 22.5 | 21.8 | 30.7 | 21.9 | 14.9 | 25.9 | 21.0 | 26.9 | 20.1 | ||||
CO | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.8 | 1.7 | 0.0 | 0.7 | 1.7 | 1.2 | 0.4 | 1.7 | 0.2 | 1.2 | ||||
CH4 | 8.6 | 22.7 | 19.2 | 7.4 | 20.7 | 18.2 | 7.6 | 6.8 | 20.9 | 19.5 | 4.5 | 23.4 | 19.6 | 23.2 | 20.4 | ||||
CO2 | 0.0 | 0.0 | 9.1 | 0.0 | 0.0 | 7.4 | 22.6 | 0.0 | 0.0 | 7.5 | 31.2 | 0.0 | 8.7 | 0.0 | 9.7 | ||||
Ethane | 7.3 | 6.8 | 4.5 | 4.9 | 3.3 | 4.1 | 4.3 | 4.4 | 4.6 | 3.7 | 2.5 | 4.0 | 3.0 | 3.6 | 2.9 | ||||
Ethene | 14.6 | 11.0 | 8.9 | 10.3 | 8.7 | 7.3 | 7.4 | 8.7 | 8.3 | 6.9 | 5.8 | 7.8 | 6.2 | 7.5 | 6.3 | ||||
Propane | 23.3 | 21.3 | 20.1 | 13.2 | 12.1 | 14.7 | 11.1 | 15.6 | 11.1 | 11.2 | 9.9 | 8.3 | 8.0 | 8.1 | 6.6 | ||||
Propene | 17.7 | 12.8 | 12.4 | 15.8 | 15.3 | 11.1 | 9.6 | 15.2 | 10.1 | 10.1 | 11.0 | 12.6 | 11.9 | 11.9 | 12.8 | ||||
Isobutane | 5.6 | 4.9 | 7.0 | 5.5 | 7.4 | 6.4 | 3.5 | 9.1 | 3.6 | 5.0 | 5.8 | 4.1 | 5.0 | 5.1 | 4.7 | ||||
Butane | 3.5 | 3.0 | 3.6 | 3.0 | 3.4 | 3.3 | 2.1 | 4.0 | 2.2 | 2.6 | 2.6 | 2.1 | 2.3 | 2.4 | 2.0 | ||||
t-2-butene | 1.7 | 1.3 | 1.4 | 1.8 | 2.0 | 1.3 | 1.0 | 2.0 | 0.9 | 1.2 | 1.4 | 1.6 | 1.8 | 1.5 | 1.9 | ||||
1-butene | 1.4 | 1.1 | 1.1 | 1.5 | 1.6 | 1.0 | 0.8 | 1.5 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 | 1.2 | 1.4 | ||||
isobutylene | 3.2 | 2.5 | 2.8 | 3.6 | 4.1 | 2.5 | 1.9 | 4.1 | 1.9 | 2.7 | 3.2 | 3.4 | 3.8 | 3.1 | 4.1 | ||||
c-2-butene | 1.2 | 0.9 | 1.0 | 1.3 | 1.4 | 0.9 | 0.7 | 1.4 | 0.7 | 0.9 | 1.0 | 1.1 | 1.2 | 1.0 | 1.3 | ||||
>C5 | 3.9 | 3.7 | 3.8 | 5.3 | 5.0 | 3.7 | 3.4 | 5.5 | 3.6 | 4.1 | 3.8 | 4.2 | 4.4 | 4.3 | 4.5 | ||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Table 5 Gas composition obtained from pyrolysis of PP over different catalysts.
HZ (Vol%) | GHZ(1) (Vol%) | RO-GHZ(1) ( Vol%) | RO-GHZ(3) ( Vol%) | RO-GHZ(5) ( Vol%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CH4 | BG | N2 | CH4 | BG | CO2 | N2 | CH4 | BG | CO2 | CH4 | BG | CH4 | BG | |||||
H2 | 8.0 | 8.0 | 4.7 | 26.4 | 15.0 | 17.2 | 22.5 | 21.8 | 30.7 | 21.9 | 14.9 | 25.9 | 21.0 | 26.9 | 20.1 | ||||
CO | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.8 | 1.7 | 0.0 | 0.7 | 1.7 | 1.2 | 0.4 | 1.7 | 0.2 | 1.2 | ||||
CH4 | 8.6 | 22.7 | 19.2 | 7.4 | 20.7 | 18.2 | 7.6 | 6.8 | 20.9 | 19.5 | 4.5 | 23.4 | 19.6 | 23.2 | 20.4 | ||||
CO2 | 0.0 | 0.0 | 9.1 | 0.0 | 0.0 | 7.4 | 22.6 | 0.0 | 0.0 | 7.5 | 31.2 | 0.0 | 8.7 | 0.0 | 9.7 | ||||
Ethane | 7.3 | 6.8 | 4.5 | 4.9 | 3.3 | 4.1 | 4.3 | 4.4 | 4.6 | 3.7 | 2.5 | 4.0 | 3.0 | 3.6 | 2.9 | ||||
Ethene | 14.6 | 11.0 | 8.9 | 10.3 | 8.7 | 7.3 | 7.4 | 8.7 | 8.3 | 6.9 | 5.8 | 7.8 | 6.2 | 7.5 | 6.3 | ||||
Propane | 23.3 | 21.3 | 20.1 | 13.2 | 12.1 | 14.7 | 11.1 | 15.6 | 11.1 | 11.2 | 9.9 | 8.3 | 8.0 | 8.1 | 6.6 | ||||
Propene | 17.7 | 12.8 | 12.4 | 15.8 | 15.3 | 11.1 | 9.6 | 15.2 | 10.1 | 10.1 | 11.0 | 12.6 | 11.9 | 11.9 | 12.8 | ||||
Isobutane | 5.6 | 4.9 | 7.0 | 5.5 | 7.4 | 6.4 | 3.5 | 9.1 | 3.6 | 5.0 | 5.8 | 4.1 | 5.0 | 5.1 | 4.7 | ||||
Butane | 3.5 | 3.0 | 3.6 | 3.0 | 3.4 | 3.3 | 2.1 | 4.0 | 2.2 | 2.6 | 2.6 | 2.1 | 2.3 | 2.4 | 2.0 | ||||
t-2-butene | 1.7 | 1.3 | 1.4 | 1.8 | 2.0 | 1.3 | 1.0 | 2.0 | 0.9 | 1.2 | 1.4 | 1.6 | 1.8 | 1.5 | 1.9 | ||||
1-butene | 1.4 | 1.1 | 1.1 | 1.5 | 1.6 | 1.0 | 0.8 | 1.5 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 | 1.2 | 1.4 | ||||
isobutylene | 3.2 | 2.5 | 2.8 | 3.6 | 4.1 | 2.5 | 1.9 | 4.1 | 1.9 | 2.7 | 3.2 | 3.4 | 3.8 | 3.1 | 4.1 | ||||
c-2-butene | 1.2 | 0.9 | 1.0 | 1.3 | 1.4 | 0.9 | 0.7 | 1.4 | 0.7 | 0.9 | 1.0 | 1.1 | 1.2 | 1.0 | 1.3 | ||||
>C5 | 3.9 | 3.7 | 3.8 | 5.3 | 5.0 | 3.7 | 3.4 | 5.5 | 3.6 | 4.1 | 3.8 | 4.2 | 4.4 | 4.3 | 4.5 | ||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atmosphere | N2 | CH4 | Biogas | N2 | CH4 | Biogas | N2 | CH4 | Biogas | ||
C2H4/C2H6 | 1.99 | 1.61 | 1.98 | 2.09 | 2.64 | 1.80 | 1.96 | 1.80 | 1.85 | ||
C3H6/C3H8 | 0.76 | 0.60 | 0.62 | 1.20 | 1.26 | 0.75 | 0.97 | 0.91 | 0.90 |
Table 6 Light olefin/paraffin ratio obtained from pyrolysis of PP over HZ, GHZ(1) and RO-GHZ(1).
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atmosphere | N2 | CH4 | Biogas | N2 | CH4 | Biogas | N2 | CH4 | Biogas | ||
C2H4/C2H6 | 1.99 | 1.61 | 1.98 | 2.09 | 2.64 | 1.80 | 1.96 | 1.80 | 1.85 | ||
C3H6/C3H8 | 0.76 | 0.60 | 0.62 | 1.20 | 1.26 | 0.75 | 0.97 | 0.91 | 0.90 |
|
[1] | 肖佩佩, 王勇, 唐晓敏, 郑安民, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Dirk De Vos, 孟祥举, 肖丰收, Hermann Gies, 横井俊之. 有机结构导向剂的异构体影响AEI沸石中铝的分布及其在甲烷氧化中的催化性能[J]. 催化学报, 2025, 73(6): 252-260. |
[2] | 郑依涵, 王宇欣, 李瑞涛, 杨皓然, 代元元, 牛强, 林铁军, 龚坤, 钟良枢. 太阳能驱动的光热协同催化甲烷裂解零碳排放制备氢气[J]. 催化学报, 2025, 73(6): 289-299. |
[3] | Jangeon Roh, Kihun Nam, Yong Hyun Lim, Yeseul Hwang, Hae Won Ryu, Kyoungmin Kim, Gyeongmin Seok, Yangho Jeong, Jong Hun Kang, Jungyeop Lee, Jong-Ki Jeon, Do Heui Kim. 二氧化硅壳层包覆NiO与Mo/HZSM-5物理混合对甲烷脱氢芳构化的促进作用[J]. 催化学报, 2025, 71(4): 220-233. |
[4] | 迂文兵, 司晓勤, 李梦洁, 刘正刚, 卢锐, 路芳. 无外加氢源催化转化生物质固废制甲烷[J]. 催化学报, 2025, 71(4): 246-255. |
[5] | 黄渝, 邹磊, 黄远标, 曹荣. 光、电、光电催化甲烷转化至醇类物质[J]. 催化学报, 2025, 70(3): 207-229. |
[6] | 段会梅, 李晓菲, 王传辉, 张丛筠, 余楷文, 陈磊, 张云尚, 纪嘉宾, 杨贤峰, 杨东江. Ir/TiO2催化剂甲烷燃烧反应中TiO2晶面依赖效应[J]. 催化学报, 2025, 70(3): 378-387. |
[7] | 李德正, 刘会敏, 肖雪文, 赵曼淇, 贺德华, 雷一鸣. 碳扩散机制作为有效的稳定性增强策略——以镍基催化剂用于光热催化甲烷干重整为例的研究[J]. 催化学报, 2025, 70(3): 399-409. |
[8] | Mayra Alejandra Suarez, Laura Santamaria, Gartzen Lopez, Enara Fernandez, Martin Olazar, Maider Amutio, Maite Artetxe. 镍催化剂上HDPE热解挥发物的氧化蒸汽重整: 载体和助剂的影响[J]. 催化学报, 2025, 69(2): 149-162. |
[9] | Yunha Hwang, Dong-Heon Lee, Seung Jae Lee. 可溶甲烷单氧酶中不同组分对甲烷羟基化的协调作用[J]. 催化学报, 2025, 68(1): 204-212. |
[10] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[11] | 沈辰阳, 刘梦辉, 何松, 赵海波, 刘昌俊. 二氧化碳甲烷化负载型钌基催化剂的研究进展[J]. 催化学报, 2024, 63(8): 1-15. |
[12] | 杨冲亚, 王玮珏, 卓红英, 沈铮, 张天雨, 杨小峰, 黄延强. 晶相设计钌基纳米催化剂提高CO2甲烷化活性[J]. 催化学报, 2024, 61(6): 226-236. |
[13] | 谈源龙, 张亚峰, 高雅, 马静远, 赵晗, 顾青青, 苏杨, 徐晓燕, 王爱琴, 杨冰, 张国旭, 刘晓艳, 张涛. 氧化还原驱动的高活性Pd/PdO表面界面促进低温甲烷燃烧[J]. 催化学报, 2024, 60(5): 242-252. |
[14] | 龚汉涛, 邓才豪, 何佩佩, 刘明杰, 蔡翼亮, 杨亦文, 杨启炜, 鲍宗必, 任其龙, 姚思宇, 张治国. 异质结光催化剂选择性光氧化甲烷为C1含氧化合物[J]. 催化学报, 2024, 67(12): 61-70. |
[15] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||