催化学报 ›› 2025, Vol. 74: 308-318.DOI: 10.1016/S1872-2067(25)64698-5

• 论文 • 上一篇    下一篇

利用Pt-C3N4单原子催化剂实现木质纤维素光重整共生产H2与乳酸

王尔玉a,e,1, 褚艺淳b,1, 张文君a, 魏彦平c, 司传领a,d,*(), Regina Palkovitse,f,g, 吴新平b,*(), 陈祖鹏a,*()   

  1. a南京林业大学, 江苏省林业资源高效加工利用协同创新中心, 江苏南京 210037, 中国
    b华东理工大学, 绿色化学工程与工业催化国家重点实验室, 上海 200237, 中国
    c甘肃农业大学理学院, 甘肃兰州 730070, 中国
    d天津科技大学, 生物基纤维材料全国重点实验室, 天津市制浆造纸重点实验室, 天津 300457, 中国
    e亚琛工业大学, 高分子与技术化学研究所, 亚琛, 德国
    f可持续氢能经济研究所, 于利希, 德国
    g马普化学能源转换研究所, 米尔海姆, 德国
  • 收稿日期:2025-01-15 接受日期:2025-03-06 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: sichli@tust.edu.cn (司传领),xpwu@ecust.edu.cn (吴新平),czp@njfu.edu.cn (陈祖鹏).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFD2200505);国家自然科学基金(22202105);江苏省高校自然科学研究项目(21KJA150003);江苏省创新创业团队项目(JSSCTD202345)

Sustainable co-production of H2 and lactic acid from lignocellulose photoreforming using Pt-C3N4 single-atom catalyst

Eryu Wanga,e,1, Yi-Chun Chub,1, Wenjun Zhanga, Yanping Weic, Chuanling Sia,d,*(), Regina Palkovitse,f,g, Xin-Ping Wub,*(), Zupeng Chena,*()   

  1. aJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
    bState Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
    cCollege of Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    dState Key Laboratory of Biobased Fiber Materials, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
    eInstitute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
    fInstitute for a Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich, Marie-Curie-Str. 5, 52428 Jülich, Germany
    gMax-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
  • Received:2025-01-15 Accepted:2025-03-06 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: sichli@tust.edu.cn (C. Si), xpwu@ecust.edu.cn (X.-P. Wu), czp@njfu.edu.cn (Z. Chen).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2023YFD2200505);National Natural Science Foundation of China(22202105);Natural Science Foundation of Jiangsu Higher Education Institutions of China(21KJA150003);Innovation and Entrepreneurship Team Program of Jiangsu Province(JSSCTD202345)

摘要:

随着全球能源与环境问题的日益严峻, 发展可持续绿色能源已成为当今社会研究热点. 作为地球上最丰富的生物质资源, 木质纤维素因含氢值高且廉价而备受关注. 通过利用可再生太阳能光催化重整木质纤维素联产氢气和生物基化学品, 可以实现低成本生物质向高品位清洁能源和高附加值化学品的高效转化, 该技术具有反应条件温和、无二次污染等优势, 为缓解能源危机和全球变暖提供了有效策略. 近年来, 虽已开发出若干用于木质纤维素光重整的范例, 但现有技术仍面临转化效率和选择性低、经济性较差等问题, 高效双功能生物炼制体系的构建仍处于探索阶段. 在催化材料方面, 单原子催化剂凭借近乎100%的金属原子利用率, 在多种催化反应中展现出优异的催化活性和选择性. 同时, 氮化碳(C3N4)材料因其约60 wt%的高氮含量, 能够提供大量未配位孤对电子位点, 具有优异的金属锚定能力, 是单原子催化剂的理想载体.

本文以三聚氰胺、三聚氰酸为原料, 通过分子间作用力自组装制备超分子前驱体, 经600 °C煅烧得到层状氮化碳载体, 以氯铂酸为铂源, 采用两步煅烧法制备超高性能的负载单原子铂的氮化碳光催化剂(Pt-C3N4), 用于木质纤维素的光重整催化. 通过对催化剂物相结构、表面价键、光吸收性能及光电性能测定, 发现Pt原子的引入可以增强光生载流子的分离和迁移, 从而提高光催化的效果. 将制得的催化剂用于包括纤维素、半纤维素和木质素在内的木质纤维素光催化重整的反应体系中, 并系统考察了反应条件对光重整葡萄糖产氢速率的影响. 结果表明, 在427 nm LED光源照射下, 金属负载量为0.35 wt%时催化剂([Pt0.35]1-C3N4)的产氢效果最佳, H2产率达到6.34 mmol molPt-1 h-1, 相较于纳米尺寸的PtNP-C3N4和纯氮化碳, 分别提高了约4.6倍和30.5倍, 有效地提高了贵金属在光重整体系中的利用率. 采用高效液相色谱对葡萄糖、果糖和木糖的液相产物收集并分析, 计算得出乳酸的选择性分别为82%, 93%和97%. 经过5次的循环反应, 催化剂的结构和催化活性均未发生明显改变, 展现出了优异的循环稳定性. 理论计算结果表明, 单原子Pt的引入使最高占据轨道定位在Pt原子上, 而最低未占据轨道仍分布在C3N4材料上, 从而促进了电荷分离.

综上, 本研究为通过生物质光炼制实现氢气和生物基化学品的可持续生产提供了一种有前景的策略.

关键词: 氮化碳, 单原子催化剂, 木质纤维素光炼制, 氢气, 生物基化产品

Abstract:

The co-production of hydrogen and value-added biochemicals from lignocellulose utilizing solar energy has been regarded as one of the technologies most potentially able to alleviate the current energy crisis. Here, we demonstrate a cost-effective photoreforming strategy for lignocellulose valorization using a carbon nitride-supported platinum single-atom photocatalyst. An advanced H2 evolution rate of 6.34 mmol molPt-1 h-1 is achieved over the optimal catalyst, which is around 4.6 and 30.5 times higher compared with the nanosized Pt counterpart and pristine carbon nitride, respectively. Meanwhile, the monosaccharides are oxidized to value-added lactic acid with >99% conversion and extraordinary selectivity up to 97%. The theoretical calculations show that with Pt incorporation, the photogenerated holes are predominantly localized on the metal sites while the photogenerated electrons are concentrated on C3N4, thus enhancing the effective separation of charge carriers. This work provides a promising avenue for the simultaneous production of green H2 and bio-based chemicals by biomass photorefinery.

Key words: Carbon nitride, Single-atom catalyst, Lignocellulose photorefinery, Hydrogen, Biochemical