催化学报 ›› 2025, Vol. 74: 4-21.DOI: 10.1016/S1872-2067(25)64738-3

• 综述 • 上一篇    下一篇

高效碳转化的铁基费-托合成催化剂研究进展

张雪晴, 吉叶伍沙, 张煜华, 李金林, 王立*()   

  1. 中南民族大学, 催化转化与能源材料化学教育部重点实验室, 催化材料科学湖北省重点实验室, 湖北武汉 430074
  • 收稿日期:2024-12-31 接受日期:2025-04-18 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: li.wang@scuec.edu.cn (王立).
  • 基金资助:
    国家重点研发计划(2022YFB4101200);国家自然科学基金(22372199);国家自然科学基金(22072184);国家自然科学基金(U22A20394);湖北省青年拔尖人才培养计划

Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency

Xueqing Zhang, Wusha Jiye, Yuhua Zhang, Jinlin Li, Li Wang*()   

  1. Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, Hubei, China
  • Received:2024-12-31 Accepted:2025-04-18 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: li.wang@scuec.edu.cn (L. Wang).
  • About author:Li Wang (South-Central Minzu University) received his B.S. degree in 2005 from Anhui University, and his M.S. and Ph. D degrees in 2007 and 2010, respectively, from Nanjing University. From 2010 to 2012, he worked as a senior engineer at Sinopec Shanghai Research Institute of Petrochemical Technology. In 2013, he joined the faculty of South-Central Minzu University, working in the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education. From 2016 to 2017, he was a visiting scholar at Pacific Northwest National Laboratory and Washington State University, USA. He was selected for the Young Top-notch Talent Cultivation Program of Hubei Province (2021) and was recognized as a Young Talent by the National Ethnic Affairs Commission of China (2022). His current research focuses on the Fischer-Tropsch synthesis and the application of industrial catalysts. In 2024, he was honored as an Outstanding Young Editorial Board Member by the Journal of Fuel Chemistry and Technology. He has published more than 100 peer-reviewed papers.
  • Supported by:
    National Key R&D Program of China(2022YFB4101200);National Natural Science Foundation of China(22372199);National Natural Science Foundation of China(22072184);National Natural Science Foundation of China(U22A20394);Young Top-notch Talent Cultivation Program of Hubei Province

摘要:

费-托合成是将煤、天然气、生物质和废弃有机物等含碳资源经合成气转化为清洁燃料与高附加值化学品的关键技术. 目前, 钴基和铁基催化剂已在工业上得到广泛应用. 铁基催化剂因其成本优势、较宽的反应温度适应范围以及对低H2/CO比的煤基或生物质衍生合成气的良好适应性, 在工业催化剂体系中占据重要地位. 尽管铁基费-托催化剂具有悠久的工业化应用历史, 其仍面临两大关键问题亟待解决: 首先, 在费-托合成过程中, 铁基催化剂会发生金属铁、铁氧化物与铁碳化物等多种物相之间的动态转变, 导致反应机制复杂且难以精确调控. 其次, 铁基费-托合成反应中伴随的CO歧化、水煤气变换等副反应会导致较高的CO2选择性, 从而显著降低了整体碳利用效率.

本文系统总结了铁基催化剂在费-托合成反应中提升碳利用效率方面的最新研究进展. 首先, 简要介绍了铁基催化剂在费-托合成中的应用优势及面临的关键科学问题, 重点分析了活性相调控与CO2选择性抑制在催化剂性能优化中的重要性. 随后, 概述了近年来通过活性相保护、表面疏水性改性与石墨烯限域等策略, 在提升铁基费-托催化剂碳利用效率和反应稳定性方面取得的研究进展与发展趋势. 具体而言: (1)通过精准调控催化剂制备、活化及反应过程中的关键参数, 可实现纯相碳化铁催化剂的构筑. 此类催化剂不仅能够有效抑制CO2副产物的生成, 同时显著提升催化活性与目标烃类的产率. 该策略主要通过在费-托合成反应中有效截断初次CO2的形成路径, 从而实现低CO2选择性. 然而, 纯相碳化铁在反应条件下仍易发生相变、多相共存及碳沉积等现象. (2)通过引入疏水性表面修饰, 可显著降低催化剂表面局部的H2O浓度, 进而有效抑制水煤气变换反应的发生, 减少费-托合成反应中二次CO2的生成. 此外, 疏水保护层有助于维持活性相的完整性, 增强C-C偶联过程, 促进长链烯烃的生成. 同时, 疏水层也可能对合成气扩散产生阻碍, 限制铁相的碳化进程, 从而在一定程度上削弱催化活性. 因此, 如何在疏水改性与反应动力学之间实现合理平衡, 仍需进一步探索. (3)石墨烯限域效应为优化铁基费-托合成催化剂性能提供了一种高效策略. 石墨烯层通过限域作用可有效防止铁物种氧化与碳扩散, 显著提升活性碳化铁相在反应过程中的稳定性, 同时抑制活性相颗粒的团聚与烧结. 限域环境还促进铁物种的还原与碳化, 推动高活性碳化铁活性相(ε-Fe2C, χ-Fe5C2)的形成. 此外, 石墨烯层能够抑制表面水分子的再吸附, 进一步降低水煤气变换反应活性, 从而减少CO2的生成, 最终实现对目标产物选择性的提升.

综上所述, 本文系统总结了铁基费-托合成催化剂的最新研究进展, 重点讨论了反应机理、活性相构效关系、低CO2选择性调控策略及当前面临的关键科学问题. 未来, 如何协同抑制由CO歧化反应引起的初次CO2生成与水煤气变换反应导致的二次CO2生成, 将成为进一步提升铁基催化剂催化效率的关键. 围绕上述挑战, 本文旨在为构建具有高活性、低CO2选择性与优异稳定性的新一代铁基费-托催化剂提供理论支撑与设计策略, 进一步促进费-托合成技术在工业应用中的高效化与可持续发展.

关键词: 费-托合成, 合成气转化, 二氧化碳, 碳效率, 碳化铁, 石墨烯层限域

Abstract:

Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal, natural gas, and biomass into clean fuels and high-value chemicals via syngas. Catalyst development is crucial for optimizing the process, with cobalt- and iron-based catalysts being widely used in industrial applications. Iron-based catalysts, in particular, are favored due to their low cost, broad temperature range, and high water-gas shift reaction activity, making them ideal for syngas derived from coal and biomass with a low H2/CO ratio. However, despite their long history of industrial use, iron-based catalysts face two significant challenges. First, the presence of multiple iron phases-metallic iron, iron oxides, and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations. Second, the high water-gas shift activity of these catalysts leads to increased CO2 selectivity, thereby reducing overall carbon efficiency. In Fischer-Tropsch synthesis, CO2 can arise as primary CO2 from CO disproportionation (the Boudouard reaction) and as secondary CO2 from the water-gas shift reaction. The accumulation of CO2 formation further compromises overall carbon efficiency, which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality. This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis, with particular emphasis on overcoming these two critical challenges for iron-based catalysts: regulating the active phases and minimizing CO2 selectivity. Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts. In this review, recent efforts to suppress CO2 selectivity of iron-based catalysts, including catalyst hydrophobic modification and graphene confinement, are explored for their potential to stabilize active phases and prevent unwanted side reactions. This innovative approach offers new opportunities for developing catalysts with high activity, low CO2 selectivity, and enhanced stability, which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis. Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies, supporting the global push for net-zero emissions goals, and contributing to carbon reduction efforts worldwide.

Key words: Fischer-Tropsch synthesis, Syngas conversion, Carbon dioxide, Carbon efficiency, Iron carbide, Graphene layer confinement