催化学报 ›› 2025, Vol. 74: 4-21.DOI: 10.1016/S1872-2067(25)64738-3
收稿日期:
2024-12-31
接受日期:
2025-04-18
出版日期:
2025-07-18
发布日期:
2025-07-20
通讯作者:
*电子信箱: li.wang@scuec.edu.cn (王立).基金资助:
Xueqing Zhang, Wusha Jiye, Yuhua Zhang, Jinlin Li, Li Wang*()
Received:
2024-12-31
Accepted:
2025-04-18
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
Li Wang (South-Central Minzu University) received his B.S. degree in 2005 from Anhui University, and his M.S. and Ph. D degrees in 2007 and 2010, respectively, from Nanjing University. From 2010 to 2012, he worked as a senior engineer at Sinopec Shanghai Research Institute of Petrochemical Technology. In 2013, he joined the faculty of South-Central Minzu University, working in the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education. From 2016 to 2017, he was a visiting scholar at Pacific Northwest National Laboratory and Washington State University, USA. He was selected for the Young Top-notch Talent Cultivation Program of Hubei Province (2021) and was recognized as a Young Talent by the National Ethnic Affairs Commission of China (2022). His current research focuses on the Fischer-Tropsch synthesis and the application of industrial catalysts. In 2024, he was honored as an Outstanding Young Editorial Board Member by the Journal of Fuel Chemistry and Technology. He has published more than 100 peer-reviewed papers.
Supported by:
摘要:
费-托合成是将煤、天然气、生物质和废弃有机物等含碳资源经合成气转化为清洁燃料与高附加值化学品的关键技术. 目前, 钴基和铁基催化剂已在工业上得到广泛应用. 铁基催化剂因其成本优势、较宽的反应温度适应范围以及对低H2/CO比的煤基或生物质衍生合成气的良好适应性, 在工业催化剂体系中占据重要地位. 尽管铁基费-托催化剂具有悠久的工业化应用历史, 其仍面临两大关键问题亟待解决: 首先, 在费-托合成过程中, 铁基催化剂会发生金属铁、铁氧化物与铁碳化物等多种物相之间的动态转变, 导致反应机制复杂且难以精确调控. 其次, 铁基费-托合成反应中伴随的CO歧化、水煤气变换等副反应会导致较高的CO2选择性, 从而显著降低了整体碳利用效率.
本文系统总结了铁基催化剂在费-托合成反应中提升碳利用效率方面的最新研究进展. 首先, 简要介绍了铁基催化剂在费-托合成中的应用优势及面临的关键科学问题, 重点分析了活性相调控与CO2选择性抑制在催化剂性能优化中的重要性. 随后, 概述了近年来通过活性相保护、表面疏水性改性与石墨烯限域等策略, 在提升铁基费-托催化剂碳利用效率和反应稳定性方面取得的研究进展与发展趋势. 具体而言: (1)通过精准调控催化剂制备、活化及反应过程中的关键参数, 可实现纯相碳化铁催化剂的构筑. 此类催化剂不仅能够有效抑制CO2副产物的生成, 同时显著提升催化活性与目标烃类的产率. 该策略主要通过在费-托合成反应中有效截断初次CO2的形成路径, 从而实现低CO2选择性. 然而, 纯相碳化铁在反应条件下仍易发生相变、多相共存及碳沉积等现象. (2)通过引入疏水性表面修饰, 可显著降低催化剂表面局部的H2O浓度, 进而有效抑制水煤气变换反应的发生, 减少费-托合成反应中二次CO2的生成. 此外, 疏水保护层有助于维持活性相的完整性, 增强C-C偶联过程, 促进长链烯烃的生成. 同时, 疏水层也可能对合成气扩散产生阻碍, 限制铁相的碳化进程, 从而在一定程度上削弱催化活性. 因此, 如何在疏水改性与反应动力学之间实现合理平衡, 仍需进一步探索. (3)石墨烯限域效应为优化铁基费-托合成催化剂性能提供了一种高效策略. 石墨烯层通过限域作用可有效防止铁物种氧化与碳扩散, 显著提升活性碳化铁相在反应过程中的稳定性, 同时抑制活性相颗粒的团聚与烧结. 限域环境还促进铁物种的还原与碳化, 推动高活性碳化铁活性相(ε-Fe2C, χ-Fe5C2)的形成. 此外, 石墨烯层能够抑制表面水分子的再吸附, 进一步降低水煤气变换反应活性, 从而减少CO2的生成, 最终实现对目标产物选择性的提升.
综上所述, 本文系统总结了铁基费-托合成催化剂的最新研究进展, 重点讨论了反应机理、活性相构效关系、低CO2选择性调控策略及当前面临的关键科学问题. 未来, 如何协同抑制由CO歧化反应引起的初次CO2生成与水煤气变换反应导致的二次CO2生成, 将成为进一步提升铁基催化剂催化效率的关键. 围绕上述挑战, 本文旨在为构建具有高活性、低CO2选择性与优异稳定性的新一代铁基费-托催化剂提供理论支撑与设计策略, 进一步促进费-托合成技术在工业应用中的高效化与可持续发展.
张雪晴, 吉叶伍沙, 张煜华, 李金林, 王立. 高效碳转化的铁基费-托合成催化剂研究进展[J]. 催化学报, 2025, 74: 4-21.
Xueqing Zhang, Wusha Jiye, Yuhua Zhang, Jinlin Li, Li Wang. Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency[J]. Chinese Journal of Catalysis, 2025, 74: 4-21.
Fig. 2. (a) Qualitative interpretation of the ab initio atomistic thermodynamics study of the iron carbide structures. Reproduced from Ref. [42] with permission from American Chemical Society. (b) Scheme for the preparation of ε-Fe2C from the RQ Fe50Al50 alloy. Reproduced from Ref. [44] with permission from Nature Publishing Group. (c) Schematic Illustration of the Formation Mechanism of χ-Fe5C2 NPs. Reproduced from Ref. [52] with permission from American Chemical Society. (d) TEM images of the prepared single-phase θ-Fe3C sample. Reproduced from Ref. [60] with permission from Multidisciplinary Digital Publishing Institute. (e) Catalytic activity of iron carbide phases (Fe7C3, χ-Fe5C2, and ε-Fe2C) in FTS. Reproduced from Ref. [61] with permission from American Chemical Society.
Fig. 4. (a) Synthesis of the pure iron carbide phase. (b) The mechanism of Fischer-Tropsch synthesis. (c) CO conversion as a function of time over α-Fe, ε-Fe2C, Fe7C3, and χ-Fe5C2 catalysts (reaction conditions: 270 °C, 30 bar, 20 mL min-1 syngas). Reproduced from Ref. [62] with permission from Chinese Chemical Society. (d) Two typical particle growth mechanisms. Reproduced from Ref. [70] with permission from Royal Society of Chemistry. (e) The deactivation methods of iron-based catalysts during Fischer-Tropsch reaction.
Fig. 5. (a) MOFMS strategy for the Fe-based FTS catalysts: direct pyrolysis of Basolite F-300 and impregnation of the MOF precursor with a carbon source (FA) followed by pyrolysis. Reproduced from Ref. [43] with permission from Nature Publishing Group. (b) Illustration of the green and facile preparation approach of the natural magnetite-based porous Fe@C nanohybrids for FTS. Reproduced from Ref. [103] with permission from Royal Society of Chemistry.
Fig. 6. Schematic models of iron-based catalysts for Fischer-Tropsch synthesis. (a) Conventional catalysts with unconfined iron carbide (FexC) particles as the active phase. (b) Graphene layer-confined ε-Fe2C. Reproduced from Ref. [105] with permission from Nature Publishing Group.
Fig. 7. Schematic models of the armor catalyst confined by two-dimensional materials. Reproduced from Ref. [107] with permission from Royal Society of Chemistry.
Fig. 8. (a) Operando M?ssbauer spectroscopy of R-Fe catalysts. (b) FTS performance of the R-Fe catalyst as a function of time on stream. Reproduced from Ref. [121] with permission from American Association for the Advancement of Science. (c) Catalytic performance of optimized Mn-χ-Fe5C2. (d) In situ M?ssbauer spectra of the transformation of Mn-promoted Raney iron, showing as-prepared, after carburization and after Fischer-Tropsch to linear α-olefin reaction. Reproduced from Ref. [123] with permission from Springer Nature.
Fig. 9. (a) Catalytic performance of Fe2O3@SiO2-(CH3)3 catalyst. Reproduced from Ref. [126] with permission from Elsevier. (b) Catalytic performance of FeMn@Si-c catalyst. Reproduced from Ref. [124] with permission from American Association for the Advancement of Science.
Fig. 10. (a) Catalytic performance of FeNa@SiO2-c, FeNa@SiO2-c+HZSM-5 catalysts. Reproduced from Ref. [127] with permission from Wiley-VCH. (b) Catalytic performance of modified Fe/ZSM-5 catalyst. Reproduced from Ref. [129] with permission from Elsevier. (c) Catalytic performance of Fe3O4@SiO2-PFTS catalyst. Reproduced from Ref. [130] with permission from Elsevier.
Fig. 11. (a) Catalytic performance of FeK/G catalyst. Reproduced from Ref. [136] with permission from American Chemical Society. (b) Catalytic performance of N-doped graphitic carbon encapsulated iron-based catalyst. Reproduced from Ref. [137] with permission from Elsevier. (c) Catalytic performance of χ-Fe5C2 @Graphene catalyst. Reproduced from Ref. [138] with permission from National Academy of Sciences.
Fig. 12. (a) Surface-normalized carbon absorption energy (ωabs) of ε-Fe2C surfaces with and without graphene(-N) layers and the most stable structures labeled by the distances between ε-Fe2C and graphene (data in parenthesis referring to those of graphene-N). Reproduced from Ref. [105] with permission from Nature Publishing Group. (b) WGS reaction of 5Fe@C catalysts. (c) Absorption energies (Ead) of O, OH, H2O, CO, and CO/H species on pure, graphene-covered, or C-vacant-graphene-covered χ-Fe5C2 surfaces. Reproduced from Ref. [138] with permission from National Academy of Sciences.
Strategies | Catalysts | Treatment | FT condition | TOS (h) | FTY μmolCO-1 gFe-1 s-1 | CO Conv. (%) | Sel. (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | C2-C4 | C5+ | ||||||||
Conventional catalysts | 38-Fe@C | H2; 425 °C; 3 h | 340 °C; H2/CO = 1; 2 MPa; 30000 h-1 | 10 | 380.0 | 72.0 | 46.8 | 15.0 | 28.0 | 57.0 | [ |
Fe/α-Al2O3 | H2; 350 °C; 2 h | 340 °C; H2/CO=1; 2 MPa; 1500 h-1 | 64 | 84.8 | 77.0 | 46.0 | 24.0 | 56.0 | 20.0 | [ | |
Fe-in-CNT | H2; 350 °C; 5 h | 270 °C; H2/CO=2; 5.1 MPa; 2 L h-1 gcat.-1 | 24 | — | 40.0 | 18.0 | 12.0 | 41.0 | 29.0 | [ | |
35Fe/hNCNC-3 | H2; 350 °C; 2 h | 350 °C; H2/CO=1; 0.1 MPa; 12 L h-1 gcat.-1 | 60 | — | 3.5 | 39.4 | 25.0 | 57.4 | 17.6 | [ | |
FeK2/rGO | 5%H2; 450 °C; 16 h | 340 °C; H2/CO=1; 2 MPa; 24 L h-1 gcat.-1 | 24 | 220.0 | 61.0 | 51.0 | 20.0 | 73.3 | 6.7 | [ | |
Fe/Ru/SiO2 | H2/CO = 2; 280 °C; 20 h | 260 °C; H2/CO=2; 1.5 MPa; 2000 h-1 | 73 | — | 46.1 | 21.2 | 19.7 | 44.3 | 36.0 | [ | |
Phase-pure iron carbide | θ-Fe3C | NA | 250 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 100 | — | 30.0 | 9.9 | 9.4 | 39.4 | 51.2 | [ |
ε-Fe2C/ε'-Fe2.2C | 20%H2; 280 °C; 12 h | 235 °C; H2/CO=1.5; 2.3 MPa; 18000 h-1 | 150 | — | 15.0 | 5.3 | 12.0 | 29.0 | 49.0 | [ | |
Mn-χ-Fe5C2 | H2/CO = 30; 350 °C; 6 h | 250 °C; H2/CO=1.5; 3 MPa; 5 L h-1 gcat.-1 | 1100 | — | 46.1 | 9.4 | 8.1 | 44.4 | 47.5 | [ | |
Hydrophobic modification | Fe1Mn0.3@Si-c | H2; 350 °C; 10 h; syngas; 320 °C; 5 h | 320 °C; H2/CO=2; 3 MPa; 4000 h-1 | 100 | — | 56.1 | 13.0 | 12.0 | 26.0 | 62.0 | [ |
B-Fe2O3@SiO2-(CH3)3 | H2/CO = 2; 300 °C; 4 h | 320 °C; H2/CO=2; 1.5 MPa; 3000 h-1 | 12 | — | 50.0 | 3.4 | 38.0 | 51.0 | 11.0 | [ | |
FeNa@Si-c+HZSM-5 | H2; 350 °C; 2 h | 260 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 10 | — | 49.8 | 14.3 | 7.7 | 17.0 | 75.3 | [ | |
Fe/SiO2-HP3 | H2; 150 °C; 2 h; 250 °C; 2 h; 350 °C; 16 h | 280 °C; H2/CO=1.5; 2 MPa; 2.4 L h-1 gcat.-1 | 160 | — | 19.7 | 16.0 | 18.0 | 32.0 | 50.0 | [ | |
Fe/ZSM-5@S1-24(×2) | H2/CO = 2; 300 °C; 4 h | 260 °C; H2/CO=2; 1 MPa; 6 L h-1 gcat.-1 | NA | — | 43.1 | 11.4 | 11.6 | 27.7 | 60.7 | [ | |
Fe3O4@SiO2-PFTS | H2/CO = 2; 320 °C; 1 h | 320 °C; H2/CO=2; 1.5 MPa; 3000 h-1 | 120 | — | 32.9 | 4.8 | 48.1 | 47.2 | 4.7 | [ | |
Fe@Mn@0.2Si-c | H2; 350 °C; 10 h; syngas; 320 °C; 5 h | 320 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 24 | — | 55.0 | 7.5 | 13.5 | 41.5 | 45.0 | [ | |
Graphene confinement | ε-Fe2C@graphene | H2; 350 °C; 3 h | 300 °C; H2/CO=1; 1 MPa; 64 L h-1 gcat.-1 | 400 | 582.8 | 44.6 | 20.3 | 10.3 | 23.9 | 65.8 | [ |
Fe15-G | H2; 450 °C; 5 h | 325 °C; H2/CO=2; 1.5 MPa; 2.5 L h-1 gcat.-1 | 48 | 103.0 | 51.5 | 2.0 | 1.5 | 32.0 (C2-7) | 66.5 (C8+) | [ | |
FeC-800 | H2; 400 °C; 5 h | 300 °C; H2/CO=2; 2 MPa; 12 °C L h-1 gcat.-1 | 60 | 239.4 | 47.0 | 24.0 | 18.0 | 30.0 | 52.0 | [ | |
χ-Fe5C2@Graphene | NA | 260 °C; H2/CO=1; 2 MPa; 0.25 L h-1 gcat.-1 | 180 | — | 17.2 | 4.6 | 5.9 | 11.8 | 82.3 | [ | |
Fe/PGO-380 | H2; 380 °C; 6 h | 270 °C; H2/CO=2; 3 MPa; 15 L h-1 gcat.-1 | 25 | — | 30.4 | 5.1 | 21.2 | 46.6 | 32.2 | [ |
Table 1 Summary of catalytic performance over iron-based catalysts for Fischer-Tropsch synthesis.
Strategies | Catalysts | Treatment | FT condition | TOS (h) | FTY μmolCO-1 gFe-1 s-1 | CO Conv. (%) | Sel. (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | C2-C4 | C5+ | ||||||||
Conventional catalysts | 38-Fe@C | H2; 425 °C; 3 h | 340 °C; H2/CO = 1; 2 MPa; 30000 h-1 | 10 | 380.0 | 72.0 | 46.8 | 15.0 | 28.0 | 57.0 | [ |
Fe/α-Al2O3 | H2; 350 °C; 2 h | 340 °C; H2/CO=1; 2 MPa; 1500 h-1 | 64 | 84.8 | 77.0 | 46.0 | 24.0 | 56.0 | 20.0 | [ | |
Fe-in-CNT | H2; 350 °C; 5 h | 270 °C; H2/CO=2; 5.1 MPa; 2 L h-1 gcat.-1 | 24 | — | 40.0 | 18.0 | 12.0 | 41.0 | 29.0 | [ | |
35Fe/hNCNC-3 | H2; 350 °C; 2 h | 350 °C; H2/CO=1; 0.1 MPa; 12 L h-1 gcat.-1 | 60 | — | 3.5 | 39.4 | 25.0 | 57.4 | 17.6 | [ | |
FeK2/rGO | 5%H2; 450 °C; 16 h | 340 °C; H2/CO=1; 2 MPa; 24 L h-1 gcat.-1 | 24 | 220.0 | 61.0 | 51.0 | 20.0 | 73.3 | 6.7 | [ | |
Fe/Ru/SiO2 | H2/CO = 2; 280 °C; 20 h | 260 °C; H2/CO=2; 1.5 MPa; 2000 h-1 | 73 | — | 46.1 | 21.2 | 19.7 | 44.3 | 36.0 | [ | |
Phase-pure iron carbide | θ-Fe3C | NA | 250 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 100 | — | 30.0 | 9.9 | 9.4 | 39.4 | 51.2 | [ |
ε-Fe2C/ε'-Fe2.2C | 20%H2; 280 °C; 12 h | 235 °C; H2/CO=1.5; 2.3 MPa; 18000 h-1 | 150 | — | 15.0 | 5.3 | 12.0 | 29.0 | 49.0 | [ | |
Mn-χ-Fe5C2 | H2/CO = 30; 350 °C; 6 h | 250 °C; H2/CO=1.5; 3 MPa; 5 L h-1 gcat.-1 | 1100 | — | 46.1 | 9.4 | 8.1 | 44.4 | 47.5 | [ | |
Hydrophobic modification | Fe1Mn0.3@Si-c | H2; 350 °C; 10 h; syngas; 320 °C; 5 h | 320 °C; H2/CO=2; 3 MPa; 4000 h-1 | 100 | — | 56.1 | 13.0 | 12.0 | 26.0 | 62.0 | [ |
B-Fe2O3@SiO2-(CH3)3 | H2/CO = 2; 300 °C; 4 h | 320 °C; H2/CO=2; 1.5 MPa; 3000 h-1 | 12 | — | 50.0 | 3.4 | 38.0 | 51.0 | 11.0 | [ | |
FeNa@Si-c+HZSM-5 | H2; 350 °C; 2 h | 260 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 10 | — | 49.8 | 14.3 | 7.7 | 17.0 | 75.3 | [ | |
Fe/SiO2-HP3 | H2; 150 °C; 2 h; 250 °C; 2 h; 350 °C; 16 h | 280 °C; H2/CO=1.5; 2 MPa; 2.4 L h-1 gcat.-1 | 160 | — | 19.7 | 16.0 | 18.0 | 32.0 | 50.0 | [ | |
Fe/ZSM-5@S1-24(×2) | H2/CO = 2; 300 °C; 4 h | 260 °C; H2/CO=2; 1 MPa; 6 L h-1 gcat.-1 | NA | — | 43.1 | 11.4 | 11.6 | 27.7 | 60.7 | [ | |
Fe3O4@SiO2-PFTS | H2/CO = 2; 320 °C; 1 h | 320 °C; H2/CO=2; 1.5 MPa; 3000 h-1 | 120 | — | 32.9 | 4.8 | 48.1 | 47.2 | 4.7 | [ | |
Fe@Mn@0.2Si-c | H2; 350 °C; 10 h; syngas; 320 °C; 5 h | 320 °C; H2/CO=2; 2 MPa; 5 L h-1 gcat.-1 | 24 | — | 55.0 | 7.5 | 13.5 | 41.5 | 45.0 | [ | |
Graphene confinement | ε-Fe2C@graphene | H2; 350 °C; 3 h | 300 °C; H2/CO=1; 1 MPa; 64 L h-1 gcat.-1 | 400 | 582.8 | 44.6 | 20.3 | 10.3 | 23.9 | 65.8 | [ |
Fe15-G | H2; 450 °C; 5 h | 325 °C; H2/CO=2; 1.5 MPa; 2.5 L h-1 gcat.-1 | 48 | 103.0 | 51.5 | 2.0 | 1.5 | 32.0 (C2-7) | 66.5 (C8+) | [ | |
FeC-800 | H2; 400 °C; 5 h | 300 °C; H2/CO=2; 2 MPa; 12 °C L h-1 gcat.-1 | 60 | 239.4 | 47.0 | 24.0 | 18.0 | 30.0 | 52.0 | [ | |
χ-Fe5C2@Graphene | NA | 260 °C; H2/CO=1; 2 MPa; 0.25 L h-1 gcat.-1 | 180 | — | 17.2 | 4.6 | 5.9 | 11.8 | 82.3 | [ | |
Fe/PGO-380 | H2; 380 °C; 6 h | 270 °C; H2/CO=2; 3 MPa; 15 L h-1 gcat.-1 | 25 | — | 30.4 | 5.1 | 21.2 | 46.6 | 32.2 | [ |
|
[1] | 李士宁, 姚俊韬, 庞淑馨, 张景彭, 李诗颖, 刘志成, 韩璐, 樊卫斌, 朱卡克, 朱贻安. 不互溶Ag提高Co/YSZ高压甲烷干重整催化剂稳定性研究[J]. 催化学报, 2025, 74(7): 82-96. |
[2] | 曹彦伟, 曲芸豪, 苏彬, 王功伟, 黄洋, 罗振敏, 庄林, 何林. CO-H2O共电解制CO/O2用于本质安全的乙烯/乙炔氧化双羰基化反应[J]. 催化学报, 2025, 74(7): 202-210. |
[3] | 马军, 徐冰, 曹硕, 李世艳, 储伟, Siglinda Perathoner, Gabriele Centi, 刘岳峰. 反应条件下Ni/Mo2CTx MXene催化剂结构演变调节CO2还原性能[J]. 催化学报, 2025, 72(5): 243-253. |
[4] | 任宪轩, Rozemarijn D. E. Krösschell, 门卓武, 王鹏, Ivo A. W. Filot, Emiel J. M. Hensen. K对Hägg碳化物逆水煤气变换反应作用的理论研究[J]. 催化学报, 2025, 72(5): 289-300. |
[5] | 蔚张茜, 王明秀, 路昕楠, 周紫璇, 唐梓祁, 常春然, 杨永, 李圣刚, 高鹏. CO2加氢反应诱导过程中In2O3催化剂结构演变的实验和理论研究[J]. 催化学报, 2025, 72(5): 301-313. |
[6] | 王一潮, 张磊磊, 潘晓丽, 王爱琴, 张涛. 碳化铁催化氢气气氛下苯甲醇脱氧偶联制备联苄类化学品[J]. 催化学报, 2025, 71(4): 179-186. |
[7] | 陈朝阳, 钟擎天, 乌兰其其格, 计远, 刘春晓, 李旭, 郑婷婷, 江秋, 夏川. 电化学二氧化碳还原的甲酸与一氧化碳商业化途径对比[J]. 催化学报, 2025, 69(2): 52-57. |
[8] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[9] | 王佳琳, 张凯妮, Ta Thi Thuy Nga, 王亦清, 石玉川, 魏代星, 董崇礼, 沈少华. 具有非对称配位结构的硫族杂原子掺杂Ni-N-C单原子催化剂及其电化学二氧化碳还原性能[J]. 催化学报, 2024, 64(9): 54-65. |
[10] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[11] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[12] | 沈辰阳, 刘梦辉, 何松, 赵海波, 刘昌俊. 二氧化碳甲烷化负载型钌基催化剂的研究进展[J]. 催化学报, 2024, 63(8): 1-15. |
[13] | 严靖, 倪嘉琪, 孙宏丽, 苏陈良, 刘彬. 原位衰减全反射表面增强红外光谱示踪单原子催化二氧化碳电还原反应中间体的研究进展[J]. 催化学报, 2024, 62(7): 32-52. |
[14] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[15] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||