催化学报 ›› 2026, Vol. 81: 124-135.DOI: 10.1016/S1872-2067(25)64903-5

• 论文 • 上一篇    下一篇

机器学习辅助发现具有超高初始选择性的甲醇制烯烃分子筛催化剂

王心怡a,d,1, 王朝旗b,1, 杨淼a(), 王晓光b(), 左越中b, 张壮壮b, 吴一墨a,e, 韩晶峰a, 李冰a, 黄玮c, 任利敏c, 魏迎旭a, 刘欣梅d, 田鹏a, 刘中民a,e()   

  1. a 中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 辽宁大连 116023
    b 大连理工大学数学科学学院, 辽宁大连 116024
    c 大连理工大学化工学院, 精细化工国家重点实验室, 辽宁大连 116024
    d 中国石油大学(华东)化学化工学院, 重质油国家重点实验室, 山东青岛 266580
    e 中国科学院大学, 北京 100049
  • 收稿日期:2025-08-15 接受日期:2025-09-22 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: yangmiao@dicp.ac.cn (杨淼),wangxg@dlut.edu.cn (王晓光),liuzm@dicp.ac.cn (刘中民).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2024YFE0207000);国家自然科学基金(22171259);国家自然科学基金(12461050);国家自然科学基金(21991090);国家自然科学基金(21991091);国家自然科学基金(22288101);国家自然科学基金(22372020);榆林中科洁净能源创新研究院人工智能科技专项资助(DNL-YL A202206)

Machine-learning-aided discovery of methanol-to-olefins zeolite catalysts with ultra-high initial selectivity

Xinyi Wanga,d,1, Chaoqi Wangb,1, Miao Yanga(), Xiaoguang Wangb(), Yuezhong Zuob, Zhuangzhuang Zhangb, Yimo Wua,e, Jingfeng Hana, Bing Lia, Wei Huangc, Limin Renc, Yingxu Weia, Xinmei Liud, Peng Tiana, Zhongmin Liua,e()   

  1. a National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    b School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China
    c State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
    d State Key Laboratory of Heavy Oil and College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
    e University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-08-15 Accepted:2025-09-22 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: yangmiao@dicp.ac.cn (M. Yang),wangxg@dlut.edu.cn (X. Wang),liuzm@dicp.ac.cn (Z. Liu).
  • About author:1 These authors contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2024YFE0207000);National Natural Science Foundation of China(22171259);National Natural Science Foundation of China(12461050);National Natural Science Foundation of China(21991090);National Natural Science Foundation of China(21991091);National Natural Science Foundation of China(22288101);National Natural Science Foundation of China(22372020);AI S&T Program of Yulin Branch, Dalian National Laboratory for Clean Energy, CAS(DNL-YL A202206)

摘要:

随着甲醇制烯烃(MTO)工业化进程的持续推进和反应机理研究的不断深入, 设计合成优质的MTO催化剂以持续提升MTO工业过程的经济性和灵活调控烯烃产物分布已成为极具挑战的课题. 数据驱动模拟可以帮助研究者预测化学反应趋势和结果.

借助机器学习(ML)研究MTO催化问题, 有望打破以往经验桎梏, 带来反应机制和催化剂设计的新突破. 但要获得特定化学问题的具体指导策略, 仍要求研究者针对具体体系收集和整理实验数据、编码相关变量并重新训练专用模型.

本研究展示如何利用ML工作流程发现潜在的MTO分子筛催化剂. 首先建设分子筛催化MTO反应的数据库, 自变量包含分子筛结构与物性参数和反应条件等, 因变量包含甲醇转化率以及乙烯和丙烯选择性等. 其次构建自变量与因变量的关联模型. 基于数据特征训练了20多种机器学习模型、并对其准确性和可靠性进行评估和实验验证. 结果显示: 基于树类的集成学习方法在转化率(分类分析)和低碳烯烃选择性(回归分析)预测方面均表现出色, 准确率超过90%. 基于机器学习模型、开发出可用于预测分子筛MTO催化性能和最佳操作条件的软件, 方便分子筛催化剂研发. 为验证机器学习模型的泛化能力和准确性, 进一步合成了此前数据库中并未包含的STT分子筛, 使用软件预测最佳MTO评价条件及结果. 实验结果显示与预测值基本吻合, 证实了集成机器学习方法的可靠性和实用性. 从机器学习的可解释性出发, 利用决策树、特征重要性及SHAP分析, 提取获得高选择性的决策规则: 分子筛最大孔道不超过9元环(LRS≤9), 分子筛中可容纳球体的最大直径(MDi)在7.35‒7.71 Å之间. 结合较低酸密度更为理想(A/T≤0.01)的结论, 重新聚焦高硅SSZ-13 (Si/Al = 100)分子筛, 意外发现该材料在450 ºC, 空速1 h‒1条件下展现出超高的初始低碳烯烃选择性(反应37 min时乙烯加丙烯选择性高达87.6%, 其中乙烯选择性高达61.1%), 这样高的单乙烯选择性在MTO反应中极为罕见.

综上, ML在分子筛催化剂研发方面展示出有效性和应用潜力, 它可以避开复杂的反应机理, 降低实验室试错成本, 并为解决特定催化剂问题提供新机遇. 然而, 我们也认识到, ML方法高度依赖数据质量和数量. 在有限数据情况下, 还必须结合领域专家的专业知识与判断, 才能获得创新性成果.

关键词: 甲醇制烯烃, 分子筛, 机器学习, 理论设计与合成, 预测

Abstract:

With the continuous advancement of the industrialized methanol-to-olefins (MTO) process and a profound understanding of its mechanism, designing MTO catalysts to enhance light olefin yields and flexibly regulate product distribution has emerged as a significant challenge. Data-driven modeling allows chemists to anticipate reaction trends and outcomes. However, for models to be instructive for specific chemical issues, chemists must collect experimental data, encode the relevant variables and retrain specialized models. In this work, we demonstrate how to use a machine learning (ML) workflow to discover a potential MTO zeolite catalyst. An MTO database was built, on which over 20 types of ML models were trained, followed by their evaluation and experimental validation. The decision rules for high selectivity were extracted, facilitating the targeting of potential MTO catalysts and the understanding of MTO reaction mechanism. A rapid prediction of optimal MTO evaluation conditions and results for a given zeolite catalyst was also realized, greatly saving the cost of trial and error. In particular, a special MTO catalyst with high initial ethene selectivity over 60% was found, demonstrating the effectiveness and capability of ML techniques.

Key words: Methanol to olefins, Zeolite catalyst, Machine learning, Rational design and synthesis, Prediction