催化学报 ›› 2026, Vol. 81: 97-123.DOI: 10.1016/S1872-2067(25)64891-1
党凡a, 艾春丽a, 马驰a, 姜泽宇a(
), 刘基丞a, 田明姣a, 张铭倬b, 何炽a,c(
)
收稿日期:2025-06-11
接受日期:2025-09-04
出版日期:2026-02-18
发布日期:2025-12-26
通讯作者:
*电子信箱: jiangzeyu@xjtu.edu.cn (姜泽宇),chi_he@xjtu.edu.cn (何炽).
基金资助:
Fan Danga, Chunli Aia, Chi Maa, Zeyu Jianga(
), Jicheng Liua, Mingjiao Tiana, Mingzhuo Zhangb, Chi Hea,c(
)
Received:2025-06-11
Accepted:2025-09-04
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: jiangzeyu@xjtu.edu.cn (Z. Jiang),chi_he@xjtu.edu.cn (C. He).
About author:Zeyu Jiang (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) received his Ph.D degree in 2022 from Xi'an Jiaotong University. At the end of 2022, he joined the faculty of Department of Earth and Environmental Sciences, Xi'an Jiaotong University. His research interests currently focus on catalytic oxidation and high-value utilization of volatile organic compounds, methanol/ethanol dry-reforming, and CO2 hydrogenation. He has coauthored more than 50 peer-reviewed papers, and authorized 12 patents.Supported by:摘要:
挥发性有机物(VOCs)会对人类健康和自然环境造成严重危害, 因此其净化技术的开发是大气污染控制的关键方向. 催化氧化因具有高效、低能耗、环境可持续性和广泛适用性等优势而,被视为一种有前景的VOCs控制技术. 催化氧化技术中常用的催化剂可分为金属氧化物催化剂和负载型贵金属催化剂. 其中, 金属氧化物催化剂由于合成方法简单、氧化还原性能强、晶体结构可调以及稳定性优异等特性, 在VOCs催化净化领域中受到广泛研究与关注. 因此, 设计具有精确结构的高性能金属氧化物基催化剂已成为VOCs净化领域的重要研究前沿.
本文系统地总结了构建高效活性金属氧化物催化剂的最新进展. 首先, 从结构优化、晶面工程、缺陷改性及界面调控这四个角度出发, 详细探讨了金属氧化物催化剂在VOCs催化净化中的改性策略及其构效关系. 进一步阐述了高熵氧化物、单原子催化剂和双金属催化剂等新型催化体系用于VOCs催化氧化的研究进展, 为设计和开发高性能VOCs催化净化材料提供了理论支撑. 随后, 深入解析了代表性金属氧化物催化剂对典型VOCs (烷烃、芳香烃、含氧VOCs、含氯VOCs)的催化氧化机理, 揭示了催化剂结构对不同分子氧化过程的影响机制. 烷烃氧化中, C‒H键的断裂为决速步骤, 需注重提升电子传递能力; 芳香烃氧化中, 苯环结构稳定, 其氧化需高温条件, 因此晶格氧的存在非常重要; 含氧VOCs氧化过程中, 催化剂氧活化能力的提升有利于反应的进行; 含氯VOCs氧化需解决C-Cl键断裂导致的催化剂失活问题, 氧空位与表面酸性是关键影响因素. 此外, 还探讨了SO2与H2O对金属氧化物催化剂催化性能的影响机制及其稳定性优化策略. SO2分子会与污染物分子形成竞争吸附, 占据活性位点, 并在催化剂表面形成硫酸盐, 造成催化剂永久失活. H2O除会导致竞争吸附, 还会在高温下造成活性组分的烧结. 因此, 可以通过引入牺牲位点和设计特殊结构(如核壳结构、超疏水层)提升催化剂的水热稳定性与抗中毒性能. 在此基础上, 进一步总结了光催化与光热催化技术去除VOCs的研究现状, 光催化技术通过利用太阳能激发电子空穴对VOCs进行降解, 但存在光吸收范围窄、量子效率低等局限. 光热催化技术结合了光催化与热催化优势, 通过缺陷或异质结构实现协同增效, 为VOCs降解提供更多技术路径. 最后, 展望了金属氧化物催化剂在工业废气净化应用中所面临的挑战与未来发展方向.
综上, 本文系统总结并阐明了金属氧化物催化剂在VOCs催化净化中的改性策略及其构效关系, 探讨了金属氧化物催化剂的结构调控方法与性能强化机制, 揭示了金属氧化物催化剂对典型VOCs的催化氧化机理, 深入剖析了金属氧化物催化剂的稳定性优化策略及其在工业废气净化中面临的挑战. 希望本研究可以为高效金属氧化物催化剂的开发与应用提供参考.
党凡, 艾春丽, 马驰, 姜泽宇, 刘基丞, 田明姣, 张铭倬, 何炽. 金属氧化物催化剂用于挥发性有机物高效氧化的研究进展: 合成策略与催化机理[J]. 催化学报, 2026, 81: 97-123.
Fan Dang, Chunli Ai, Chi Ma, Zeyu Jiang, Jicheng Liu, Mingjiao Tian, Mingzhuo Zhang, Chi He. Advances in metal oxide catalysts for efficient VOCs oxidation: Synthesis strategy and catalytic mechanism[J]. Chinese Journal of Catalysis, 2026, 81: 97-123.
Fig. 2. (a) Typical structures of spinel catalysts: normal spinel (MgAl2O4), inverse spinel (NiFe2O4) and complex spinel (CuAl2O4). Reproduced with permission from Ref. [20]. Copyright 2024, American Chemical Society. (b) The schematic of specific modification methods for catalyst. Reproduced with permission from Ref. [30]. Copyright 2024, Elsevier.
Fig. 3. (a) Schematic diagram of hierarchical hollow, shell, and porous nanoreactors. Reproduced with permission from Ref. [32]. Copyright 2018, Wiley. (b) EDS mapping images of FeOx-CeOx/SBA-15. (c) Schematic illustration of formaldehyde oxidation over the FeOx-CeOx/SBA-15 catalyst. Reproduced with permission from Ref. [33]. Copyright 2022, American Chemical Society. (d) Synergistic catalytic mechanism of toluene oxidation on porous hollow CoxMn3?xO4 normal-reverse coexisted spinel catalyst. Reproduced with permission from Ref. [35]. Copyright 2022, Elsevier. (e) Catalytic performance of toluene oxidation over porous CeaMnOx catalysts. Reproduced with permission from Ref. [36] Copyright 2019, Elsevier. (f) Template classification diagram. Reproduced with permission from Ref. [37]. Copyright 2022, Oxford University Press. (g) Toluene signals and CO2 signals of various catalysts in the toluene-TPD test. (h) Catalytic activities (T10, T50 and T90) of the three catalysts. Reproduced with permission from Ref. [43]. Copyright 2024, Elsevier. (i) Schematic illustration of the formation process of NiCo2O4 core-in-double-shell hollow spheres. Reproduced with permission from Ref. [47]. Copyright 2014, Wiley.
Fig. 4. (a) Schematic of cube Co3O4-(100), sheet Co3O4-(111), rod Co3O4-(110) for catalyzing propane. (b) Corresponded k3-weighted Fourier-transformed spectra of cube Co3O4-(100), sheet Co3O4-(111), rod Co3O4-(110) for catalyzing propane. Reproduced with permission from Ref. [54]. Copyright 2021, Elsevier. (c) XPS spectra of the Mn 2p. (d) Ethanol oxidation activity on Mn3O4 catalyst with three different crystals surfaces. Reproduced with permission from Ref. [55]. Copyright 2021, Elsevier. (e) Adsorption energies of O2 on the NiO (111) crystal surface. (f) Reaction rate of the NiO samples at different temperatures. Reproduced with permission from Ref. [56]. Copyright 2024, Elsevier. (g) Conceptual diagram of α-MnO2 with different exposed facets for converting formaldehyde. (h) Temperature dependence on HCHO conversion over α-MnO2 with different exposed facets. Reproduced with permission from Ref. [57]. Copyright 2018, American Chemical Society. (i) Pyridine desorption FT-IR spectra of Nano-CeO2 samples. The pyridine desorption was carried out at 150 °C. (j) Reaction Pathway for Cyclohexane Oxidation and TEM images of catalysts. Reproduced with permission from Ref. [58]. Copyright 2023, American Chemical Society.
Fig. 5. (a) Propane conversion rate of SmMnO3 and SmNi0.1Mn0.9O3. Reproduced with permission from Ref. [57]. Copyright 2024, American Chemical Society. (b) the R-space Fourier-transformed FT (k3χ(k)) of Co K-edge EXAFS profiles recorded for LaCoO3 and LaCoO3-D43 catalysts. (c) Calculated DOSs for LaCoO3 with La and O defects. Reproduced with permission from Ref. [67]. Copyright 2024, Elsevier. (d) Comparison of catalytic activity between of Co3O4-L and reported catalysts. (e) Normalized Co K-edge XANES spectra of samples. Reproduced with permission from Ref. [68]. Copyright 2024, American Chemical Society. (f) Proposed mechanism of toluene catalytic oxidation over Co3-xO4-y. (g) Raman spectra over the of Co3-xO4-y, Co3-xO4, Co3O4-y, and Co3O4 catalysts. (h) DFT calculation of oxygen vacancy formation energy. Reproduced with permission from Ref. [69]. Copyright 2022, American Chemical Society. (i) Proposed mechanism for toluene oxidation over Mn-based catalysts. Reproduced with permission from Ref. [70]. Copyright 2021, Elsevier.
Fig. 6. (a) H2-TPR profiles of Cu-Mn based catalysts. (b) Selectivity of CO and CO2 at 30 °C. Reproduced with permission from Ref. [79]. Copyright 2022, American Chemical Society. (c) Schematic diagram of CeO2 supported Co3O4 catalyst for propane oxidation. (d) Oxygen adsorption and propane adsorption capacity of Co3O4 and CeO2 supported Co3O4 catalysts. Reproduced with permission from Ref. [80]. Copyright 2024, Elsevier. (e) TEM of CuO-Fe3O4 interface. (f) Cu K-edge EXAFS data for CuO-Fe3O4. Reproduced with permission from Ref. [82]. Copyright 2023, American Chemical Society. (g) Schematic illustrating Cu-Mn oxides for catalyzing acetone. (h) Probable toluene oxidation mechanism at the MnO2-Mn2O3 interface of T-0.5. Reproduced with permission from Ref. [84]. Copyright 2020, Elsevier.
Fig. 7. (a) Chemical composition of HEO. (b) Arrhenius activation energy fitting calculation for the HEO and MMO. (c) Density query for mismatch of figure and caption of states spectrogram. Reproduced with permission from Ref. [93]. Copyright 2015, American Chemical Society. (d) Methane catalytic activity of (Zr,Ce)0.6(Mg,La,Y,Hf,Ti,Cr,Mn)0.3Pd0.1O2?x, (Zr,Ce)0.6Mg0.3Pd0.1O2?x, and PdOx. Reproduced with permission from Ref. [94]. Copyright 2021, Springer Nature. (e) The performance of methanol oxidation over Pt-based materials. (f) Co 2p XPS spectra of samples. Reproduced with permission from Ref. [98]. Copyright 2019, Wiley. (g) Proposed mechanism of benzene oxidation over the PtMo/Al2O3 samples. Reproduced with permission from Ref. [105]. Copyright 2020, Elsevier. (h) Proposed surface mechanism and intrinsic mechanism of toluene oxidation over the EMSI-modulated Pt-Pd/CeO2 catalyst. Reproduced with permission from Ref. [106]. Copyright 2023, Elsevier. (i) Proposed mechanism of Pt-Ni bimetallic single-atom catalyst oxidating benzene. Reproduced with permission from Ref. [107]. Copyright 2024, Elsevier.
Fig. 8. Schematic diagrams of MvK (a), L-H (b), and E-R (c) mechanism. Reproduced with permission from Ref. [64]. Copyright 2019, American Chemical Society.
Fig. 9. (a) Schematic diagram of propane catalytic oxidation in Co-Mn binary oxides. Reproduced with permission from Ref. [113]. Copyright 2021, Elsevier. (b) Proposed reaction pathway on MnxCr3?xO4 catalyst for total oxidation of propane. Reproduced with permission from Ref. [114]. Copyright 2023, Elsevier. (c) Schematic diagram of methane reaction mechanism over Ni-doped cobalt-based spinel catalysts. (d) In-situ DRIFTS dynamic experiments: CH4 oxidation of Ni0.5Co2.5O4 in reaction conditions (1% CH4 + 20% O2 balanced with N2) at 200?300 °C. (e) Atomic composition and Bader charges of the surface element showing steps of the first C-H bond activation over the Co3O4 (110) and Ni0.5Co2.5O4 (110) surface. (f) Differential charge density diagram and change of Bader charge before and after adsorption of the OCHO species over Co3O4 (110) and Ni0.5Co2.5O4 (110). Reproduced with permission from Ref. [115]. Copyright 2024, American Chemical Society. (g) CH4 oxidation process over Co3O4/La2O2CO3/LaCoO3 catalyst. Reproduced with permission from Ref. [116]. Copyright 2023, Elsevier.
Fig. 10. (a) Two reaction pathways for the ring opening of benzene on CuMn2O4. (b) The energy profile and optimized structures of C5H4O* decomposition. Reprinted with permission from Ref. [119]. Copyright 2022, Elsevier. (c) The proposal reaction pathway over Co3O4 catalyst for toluene oxidation with gas-phase oxygen. Reproduced with permission from Ref. [120]. Copyright 2020, Elsevier. (d) Proposed mechanism for toluene oxidation on Mn-based catalyst. Reproduced with permission from Ref. [121]. Copyright 2020, Elsevier. (e) Schematic for comparison over MOF-derived Co3O4 with different shapes. Reproduced with permission from Ref. [124]. Copyright 2021, American Chemical Society. (f) The density of states (DOS) of Ce0.06-Co3O4. (g) The charge density difference plot at CeO2-Co3O4 interface. Reproduced with permission from Ref. [125]. Copyright 2025, Elsevier.
Fig. 11. (a) Reaction mechanism of CuMn2O4 for formaldehyde oxidation. (b) The energy profile and optimized structures of direct dehydrogenation and oxygen vacancy formation on the CuMn2O4 surface. (c) Adsorption energies of HCHO on CuMn2O4 surface. Reprinted with permission from Ref. [126]. Copyright 2023, Elsevier. (d) Graph of the mechanism of alkali etched CuMn2O4?δ spinel for acetone catalytic oxidation. Reprinted with permission from Ref. [128]. Copyright 2024, Elsevier. (e) Reaction pathways for acetone oxidation on the surface of SmMn2O5. Reprinted with permission from Ref. [129]. Copyright 2023, American Chemical Society. (f) Scheme of the ethyl acetate oxidation over Mn2O3 catalyst. Reprinted with permission from Ref. [130]. Copyright 2024, Elsevier. (g) Mechanistic insight into catalytic combustion of Ethyl Acetate on modified CeO2 nanobelts. Reproduced with permission from Ref. [131]. Copyright 2023, American Chemical Society. (h) The possible synergistic mechanism of CuO/CeO2 catalyst. Reprinted with permission from Ref. [132]. Copyright 2023, Elsevier.
Fig. 12. (a) Mechanism diagram for revealing the promotional effect of Zr and phosphate Co-decorated on δ-MnO2 catalysts for highly efficient catalytic elimination of chlorinated VOCs. Reprinted with permission from Ref. [133]. Copyright 2021, Elsevier. (b) Proposed 1,2-DCE oxidation mechanism over prepared catalysts. Reprinted with permission from Ref. [134]. Copyright 2021, Elsevier. (c) Mechanistic study on the role of oxygen vacancy for methylene chloride oxidation over LaMnO3. (d) Energy profiles and optimized structures of reaction CH2Cl2* → CH2Cl* + Cl* on defective LaMnO3 surface. Reprinted with permission from Ref. [135]. Copyright 2021, Elsevier. (e) In-situ DRIFTS of DCM catalytic oxidation on Co4Cr/WNb. (f) Effect of inserting Cr in promoting the deep oxidation of dichloromethane over Co/WNb catalysts at low temperatures. Reprinted with permission from Ref. [136]. Copyright 2024, Elsevier. (g) NH3-TPD profiles. (h) relationship between Ea, reaction rate and Br?nsted acidity of the catalyst. Reaction feed composition: 3000 × 10-6 CH2Cl2 + air. (i) Deep oxidation of CH2Cl2 over Mo-doped CoAl2O4 spinel oxides. Reprinted with permission from Ref. [137]. Copyright 2024, Elsevier.
Fig. 13. (a) Summary chart for the work of rationally fabricated Ce-Mn@ZrO2-SO42- catalyst boosts the efficient destruction of chlorobenzene with SO2 Impurity. Reproduced with permission from Ref. [138]. Copyright 2024, Elsevier. (b) Corresponding schematic diagram of the propane catalytic oxidation reactions in the presence of SO2 over Co/HLS and Fe-Co/HLS catalysts. (c) Adsorption of the SO2 molecule on the Fe-Co/HLS catalysts. (d) In-situ DRIFT spectra with temperature increased after SO2 + O2 adsorption over Fe-Co/HLS catalysts. Reproduced with permission from Ref. [139]. Copyright 2024, Elsevier. (e) In situ DRIFTS spectra of CoNiOx@Cu5V1Ox catalyst at air/SO2 of CoNiOx@Cu5V1Ox catalyst. (f) The calculation of SO2 adsorption on CoNiOx and CoNiOx@Cu5V1Ox model surfaces. Reproduced with permission from Ref. [140]. Copyright 2024, Elsevier. (g) Construction of superhydrophobic layer for enhancing the water-resistant performance of VOCs catalytic combustion. Reproduced with permission from Ref. [141]. Copyright 2022, Elsevier. (h) Proposed C3H8 oxidation mechanism over CoMnOx@CoAlOx catalysts. (i) Catalytic activity with 5 vol% H2O conditions. Reproduced with permission from Ref. [142]. Copyright 2024, Elsevier.
Fig. 14. (a) Mechanism of the photocatalytic reaction. Reprinted with permission from Ref. [140]. Copyright 2024, Elsevier. (b) Degradation curves of styrene by different wide-bandgap semiconductors. Reprinted with permission from Ref. [144]. Copyright 2024, Royal Society of Chemistry. (c) Degradation curves of BaTiO3 for styrene, toluene, benzene, and ethyl acetate under visible light. Reprinted with permission from Ref. [145]. Copyright 2024, Elsevier. (d) Schematic diagram of photothermal catalysis. Reprinted with permission from Ref. [147]. Copyright 2023, Elsevier. (e) Schematic illustration of solar-light-driven thermo-catalysis and photoactivation on Co3O4 with Co2+ vacancy defects. Reprinted with permission from Ref. [148]. Copyright 2018, American Chemical Society. (f) Schematic diagram of the charges transfers and separation mechanism in type B heterojunction WO3/Ag/GdCrO3 under photothermal conditions. Reprinted with permission from Ref. [149]. Copyright 2021, American Chemical Society. (g) Proposed photothermo-catalytic mechanism of MnOx-ZrO2. Photothermal Conditions. Reprinted with permission from Ref. [150]. Copyright 2022, Multidisciplinary Digital Publishing Institute.
|
| [1] | 刘欢, 秉琦明, 于良, 邓德会. 面向高效乙炔加氢制乙烯的二硫化钨限域金属原子催化剂理论预测[J]. 催化学报, 2025, 76(9): 221-229. |
| [2] | 梁诗诺, 李冯俊, 黄菲, 王心俣, 刘升卫. 轴向磷配位修饰Co-N4活性中心促进双通道H2O2光合成[J]. 催化学报, 2025, 76(9): 81-95. |
| [3] | 艾亚婷, 熊贤强, 朱华跃, 王齐, 翁波, 杨民权. 基于S型Mn0.5Cd0.5S/In2S3异质结光催化剂的新兴污染物消除系统评估: 降解路径、毒性评价及机理分析[J]. 催化学报, 2025, 75(8): 147-163. |
| [4] | 张启扬, Vita A. Kondratenko, 丁湘浓, Jana Weiss, Stephan Bartling, Elizaveta Fedorova, 赵丹, Dmitry E. Doronkin, 王东旭, Christoph Kubis, Evgenii V. Kondratenko. Silicalite-1中CoOx物种在反应诱导下的重构机制以调控丙烷非氧化脱氢选择性[J]. 催化学报, 2025, 74(7): 108-119. |
| [5] | 吴剑峰, 梁丽烨, 车政, 苗宇婷, 丑凌军. 双金属氧化物催化CO2加氢制备甲醇: 最新进展和挑战[J]. 催化学报, 2025, 73(6): 62-78. |
| [6] | 胡呈弘, 张悦, 张仪, 黄沁彤, 沈葵, 陈立宇, 李映伟. Sn电子调节器增强Fe位点电催化CO2还原性能[J]. 催化学报, 2025, 72(5): 222-229. |
| [7] | 石德志, 陈艳艳, 陈晓, 王森, 王强, 王鹏飞, 朱华青, 董梅, 徐君, 邓风, 王建国, 樊卫斌. [Ga(OH)]2+负载介孔中空结构H-ZSM-5: 一种高效低碳烷烃芳构化催化剂[J]. 催化学报, 2025, 72(5): 359-375. |
| [8] | 李显泉, 庞纪峰, 赵于嘉, 李林, 于文广, 徐斐斐, 苏扬, 杨小峰, 罗文豪, 郑明远. 乙醇乙醛催化转化制丁二烯的双分子协同吸附机制研究[J]. 催化学报, 2025, 71(4): 297-307. |
| [9] | 徐余幸, 王雷雷, 刘琴, 滕波涛, 武传强, 葛炳辉, 毕文团, 顾明慧, 张梦凯, 严欢, 路军岭. 催化剂精准制备与理论计算相结合揭示CO2电化学还原反应中Ni单原子催化剂活性位结构[J]. 催化学报, 2025, 79(12): 68-77. |
| [10] | 申倩倩, 董晨龙, 冯世龙, 张雪丽, 李秋蓉, 薛晋波. 非补偿性Cu/N共掺杂协同石墨烯增强TiO2光催化双通道制H2O2[J]. 催化学报, 2025, 78(11): 252-264. |
| [11] | 王男, 吴一墨, 韩晶峰, 张亚楠, 王莉, 于洋, 张嘉兴, 熊昊, 陈晓, 周易达, 王韩丽新, 徐兆超, 徐舒涛, 郭新闻, 魏飞, 魏迎旭, 刘中民. ZSM-5催化甲醇制烯烃反应积碳贯穿孔道交联生长机理: 从分子结构、时空动态到催化剂失活[J]. 催化学报, 2025, 78(11): 215-228. |
| [12] | 高绍磊, 卢鹏, 亓良, 王莹利, 李华, 叶茂, Valentin Valtchev, Alexis T. Bell, 刘中民. 超大孔分子筛ZEO-1催化甲缩醛羰基化及歧化反应: 反应网络与机理研究[J]. 催化学报, 2025, 68(1): 230-245. |
| [13] | 杜晨宇, 盛剑平, 钟丰忆, 何烨, 孙艳娟, 董帆. 光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战[J]. 催化学报, 2024, 60(5): 25-41. |
| [14] | 宋宁, 江吉周, 洪士欢, 王赟, 李春梅, 董红军. 以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展[J]. 催化学报, 2024, 59(4): 38-81. |
| [15] | 陈思雨, 管景奇. 氮还原电催化剂的结构调控策略[J]. 催化学报, 2024, 66(11): 20-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||