催化学报 ›› 2026, Vol. 81: 97-123.DOI: 10.1016/S1872-2067(25)64891-1

• 综述 • 上一篇    下一篇

金属氧化物催化剂用于挥发性有机物高效氧化的研究进展: 合成策略与催化机理

党凡a, 艾春丽a, 马驰a, 姜泽宇a(), 刘基丞a, 田明姣a, 张铭倬b, 何炽a,c()   

  1. a 西安交通大学动力工程多相流国家重点实验室, 陕西西安 710049
    b 西安交通大学机械工程学院, 陕西西安 710049
    c 中国科学院大学挥发性有机物污染控制材料与技术国家工程实验室, 北京 101408
  • 收稿日期:2025-06-11 接受日期:2025-09-04 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: jiangzeyu@xjtu.edu.cn (姜泽宇),chi_he@xjtu.edu.cn (何炽).
  • 基金资助:
    国家自然科学基金(22406146);国家自然科学基金(22276145);国家自然科学基金(22476157);国家重点研发计划(2022YFB4101500);中国博士后科学基金(2023M732783)

Advances in metal oxide catalysts for efficient VOCs oxidation: Synthesis strategy and catalytic mechanism

Fan Danga, Chunli Aia, Chi Maa, Zeyu Jianga(), Jicheng Liua, Mingjiao Tiana, Mingzhuo Zhangb, Chi Hea,c()   

  1. a State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    b Department of Mechanical Engineering (International Class of 3D Printing), Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    c National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-06-11 Accepted:2025-09-04 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: jiangzeyu@xjtu.edu.cn (Z. Jiang),chi_he@xjtu.edu.cn (C. He).
  • About author:Zeyu Jiang (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) received his Ph.D degree in 2022 from Xi'an Jiaotong University. At the end of 2022, he joined the faculty of Department of Earth and Environmental Sciences, Xi'an Jiaotong University. His research interests currently focus on catalytic oxidation and high-value utilization of volatile organic compounds, methanol/ethanol dry-reforming, and CO2 hydrogenation. He has coauthored more than 50 peer-reviewed papers, and authorized 12 patents.
    Chi He (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) received his Ph.D degree in 2010 from Chinese Academy of Sciences (CAS). His research interests currently focus on environmental catalysis, atmospheric pollution control/resource utilization chemistry, nano functional materials, heterogeneous thermal/electro-catalysis, fundamental and applied technology on solid waste utilization. He has coauthored more than 200 peer-reviewed papers with citation over 16000, and authorized 52 patents.
  • Supported by:
    National Natural Science Foundation of China(22406146);National Natural Science Foundation of China(22276145);National Natural Science Foundation of China(22476157);National Key R&D Program of China(2022YFB4101500);China Postdoctoral Science Foundation(2023M732783)

摘要:

挥发性有机物(VOCs)会对人类健康和自然环境造成严重危害, 因此其净化技术的开发是大气污染控制的关键方向. 催化氧化因具有高效、低能耗、环境可持续性和广泛适用性等优势而,被视为一种有前景的VOCs控制技术. 催化氧化技术中常用的催化剂可分为金属氧化物催化剂和负载型贵金属催化剂. 其中, 金属氧化物催化剂由于合成方法简单、氧化还原性能强、晶体结构可调以及稳定性优异等特性, 在VOCs催化净化领域中受到广泛研究与关注. 因此, 设计具有精确结构的高性能金属氧化物基催化剂已成为VOCs净化领域的重要研究前沿.

本文系统地总结了构建高效活性金属氧化物催化剂的最新进展. 首先, 从结构优化、晶面工程、缺陷改性及界面调控这四个角度出发, 详细探讨了金属氧化物催化剂在VOCs催化净化中的改性策略及其构效关系. 进一步阐述了高熵氧化物、单原子催化剂和双金属催化剂等新型催化体系用于VOCs催化氧化的研究进展, 为设计和开发高性能VOCs催化净化材料提供了理论支撑. 随后, 深入解析了代表性金属氧化物催化剂对典型VOCs (烷烃、芳香烃、含氧VOCs、含氯VOCs)的催化氧化机理, 揭示了催化剂结构对不同分子氧化过程的影响机制. 烷烃氧化中, C‒H键的断裂为决速步骤, 需注重提升电子传递能力; 芳香烃氧化中, 苯环结构稳定, 其氧化需高温条件, 因此晶格氧的存在非常重要; 含氧VOCs氧化过程中, 催化剂氧活化能力的提升有利于反应的进行; 含氯VOCs氧化需解决C-Cl键断裂导致的催化剂失活问题, 氧空位与表面酸性是关键影响因素. 此外, 还探讨了SO2与H2O对金属氧化物催化剂催化性能的影响机制及其稳定性优化策略. SO2分子会与污染物分子形成竞争吸附, 占据活性位点, 并在催化剂表面形成硫酸盐, 造成催化剂永久失活. H2O除会导致竞争吸附, 还会在高温下造成活性组分的烧结. 因此, 可以通过引入牺牲位点和设计特殊结构(如核壳结构、超疏水层)提升催化剂的水热稳定性与抗中毒性能. 在此基础上, 进一步总结了光催化与光热催化技术去除VOCs的研究现状, 光催化技术通过利用太阳能激发电子空穴对VOCs进行降解, 但存在光吸收范围窄、量子效率低等局限. 光热催化技术结合了光催化与热催化优势, 通过缺陷或异质结构实现协同增效, 为VOCs降解提供更多技术路径. 最后, 展望了金属氧化物催化剂在工业废气净化应用中所面临的挑战与未来发展方向.

综上, 本文系统总结并阐明了金属氧化物催化剂在VOCs催化净化中的改性策略及其构效关系, 探讨了金属氧化物催化剂的结构调控方法与性能强化机制, 揭示了金属氧化物催化剂对典型VOCs的催化氧化机理, 深入剖析了金属氧化物催化剂的稳定性优化策略及其在工业废气净化中面临的挑战. 希望本研究可以为高效金属氧化物催化剂的开发与应用提供参考.

关键词: 金属氧化物催化剂, 挥发性有机物氧化, 合成策略, 结构调控, 反应机理

Abstract:

The severe hazard of volatile organic compounds (VOCs) makes their decomposition technology a key topic research. Catalytic oxidation is an efficient and environmentally friendly strategy for removing VOCs. The metal oxide catalysts dominate VOCs oxidation reactions, owing to their cost-effectiveness, robust redox properties, tunable crystal structures, and excellent operational stability. Thus, designing high-performance metal oxide catalysts is important. This review systematically summarized the recent advances in constructing highly efficient active metal oxides, with emphasis on representative preparation method, the structure performance relationship, and the reaction mechanism of different types VOCs. Finally, the remaining challenges for creating metal oxide catalysts in practical applications are discussed.

Key words: Metal oxide catalysts, Volatile organic compounds oxidation, Synthesis strategy, Structure modulation, Reaction mechanism