催化学报

• •    

氰基功能化的共价有机框架通过微环境调节增强光催化性能制备过氧化氢

谢文奥a,1, 贾治芳a,1, 舒畅b, 王婷霞a, 席建红a, 蔡佳轩a, 宋向阳a, 车瑜c,*, 王笑颜b,*, 王科伟a,*, 谭必恩b   

  1. a山西大同大学化学与化工学院, 山西 大同 037009;
    b华中科技大学化学与化工学院, 教育部能源转换与存储材料化学重点实验室, 湖北省材料化学与服役失效重点实验室, 湖北 武汉 430074;
    c山西大学资源与环境工程学院, 山西 太原 030006
  • 收稿日期:2025-08-10 接受日期:2025-11-12
  • 通讯作者: *电子信箱: yuche@sxu.edu.cn (车瑜), xiaoyan_wang@hust.edu.cn (王笑颜), wangkewei@sxdtdx.edu.cn (王科伟).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(52203266, 52203259, 21975146); 山西省归国留学人员科研基金(2022-173); 山西省自然科学基金面上项目(202403021211022); 湖北省自然科学基金(2022CFB720).

Cyano-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide production via microenvironment engineering

Wenao Xiea,1, Zhifang Jiaa,1, Chang Shub, Tingxia Wanga, Jianhong Xia, Jiaxuan Caia, Xiangyang Songa, Yu Chec,*, Xiaoyan Wangb,*, Kewei Wanga,*, Bien Tanb   

  1. aDepartment of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shaanxi, China;
    bKey Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China;
    cInstitute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shaanxi, China
  • Received:2025-08-10 Accepted:2025-11-12
  • Contact: *E-mail: yuche@sxu.edu.cn (Y. Che), xiaoyan_wang@hust.edu.cn (X. Wang), wangkewei@sxdtdx.edu.cn (K. Wang).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China (52203266, 52203259, 21975146), the Shanxi Scholarship Council of China (2022-173), the Natural Science Research Project of Shanxi Province (202403021211022), and the Natural Science Foundation of Hubei Province (2022CFB720).

摘要: 光催化制备过氧化氢(H2O2)是一种利用光能直接将氧气和水转化为H2O2的绿色可持续的合成方法. 共价有机框架(COFs)作为一种高度结晶的有机多孔材料, 具有比表面积大、光学带隙可调、可设计的π共轭骨架以及可调节的孔隙环境等特点, 已被用于光催化制备H2O2. 目前COFs通常由芳香族单元构筑而成, 高度对称的刚性结构限制了电荷的有效分离, 导致光生载流子易复合或氧气吸附弱(尤其在无牺牲剂体系中). 因此, 开发高活性COF基光催化剂以促进激子分离和转移, 提高与氧气的结合能力, 成为了光催化高效制备H2O2的关键.
本文报道了一种氰基功能化的COF材料(BTT-CN-COF), 其由苯并三噻吩-2,5,8-三甲醛与2,5-二氨基苯甲腈经席夫碱缩合反应构建而成. 氰基的引入不仅在化学结构上实现了骨架极性的精准调控, 更在电子结构层面诱导了π-电子局域极化效应, 从而构筑出一种强极化的微环境. 亲水性测试证实, BTT-CN-COF相较于其无氰基对照材料BTT-Ph-COF, 表现出显著增强的表面亲水性, 为水氧化反应(WOR)提供了有利条件. 光电流响应、时间分辨光致发光谱、变温荧光光谱以及飞秒瞬态吸收光谱等光电性能表征显示, BTT-CN-COF相较于BTT-Ph-COF, 光电流响应更强, 激子结合能更小(69.2 meV); 平均载流子寿命更长(4.8 ns), 激子寿命提高了约110倍, 证明了氰基诱导的极化环境有效降低了激子束缚, 加速了电荷分离, 延长了光生载流子寿命. 因此, 在可见光照射下, 无牺牲剂条件下, BTT-CN-COF的H2O2产率高达3711 μmol g-1 h-1, 明显优于对比材料BTT-Ph-COF及众多已报道的COF光催化剂, 且延续使用至少20 h, 结构和催化性能无明显变化. 密度泛函理论计算表明, BTT-CN-COF采用Yeager-型氧气吸附模式, 具有动力学优势. 通过原位红外以及自由基捕获实验证明: BTT-CN-COF光催化生成H2O2主要历经“两步单电子”的氧还原反应生成, 同时也伴随着“直接双电子WOR”过程.
综上, 本文通过向COF中引入吸电子氰基诱导构筑强极化微环境, 提高了氧气的吸附, 促进激子分离和转移, 有效解决了该领域面临的光生载流子的快速复合以及氧吸附能力较弱的问题, 为开发高效的光催化制备H2O2体系提供了新思路, 并为其他挑战性光催化反应的设计奠定了理论基础.

关键词: 光催化制过氧化氢, 共价有机框架, 氰基功能化材料, 微环境工程, 光催化氧还原反应

Abstract: Covalent organic frameworks (COFs) have garnered considerable attention for their potential in photocatalytic hydrogen peroxide (H2O2) generation. However, their limited photocatalytic efficiency, resulting from rapid photogenerated carrier recombination and weak oxygen adsorption, remains a critical challenge, especially in systems without sacrificial agents. Herein, we present a cyano-functionalized COF, BTT-CN-COF, synthesized by Schiff-base condensation of benzotrithiophene-2,5,8-tricarbaldehyde and 2,5-diaminobenzonitrile monomers. Incorporating the electron-withdrawing cyano groups into the COF creates a strongly polarized microenvironment that redistributes π-electron structure. This modulation enhances material hydrophilicity, reduces exciton binding energy to accelerate charge separation, prolongs photogenerated carrier lifetime, and favors a Yeager-type oxygen adsorption configuration, thereby enhancing photocatalytic performance. Consequently, BTT-CN-COF achieves an impressive H2O2 production rate of 3711 μmol g-1 h-1 under sacrificial-agent-free conditions and retains high stability for at least 20 h, surpassing the cyano-free analogue COF (BTT-Ph-COF) and numerous reported COF-based photocatalysts. Mechanism studies reveal that H2O2 generation primarily proceeds via a sequential two-step single-electron oxygen reduction reaction, accompanied by a direct two-electron water oxidation reaction.

Key words: Photocatalytic hydrogen peroxide production, Covalent organic frameworks, Cyano-functionalized material, Microenvironment engineering, Photocatalytic oxygen reduction reaction