催化学报 ›› 2026, Vol. 80: 159-173.DOI: 10.1016/S1872-2067(25)64879-0

• 论文 • 上一篇    下一篇

金属掺杂ZnIn2S4/TpPa-1 S型异质结: 通过调控氢吸附/脱附和内建电场促进双功能光催化

王少单a, 杨恒b, 薛丽君a, 张建军c,*(), 欧阳述昕a, 温丽丽a,*()   

  1. a华中师范大学化学学院, 光能利用与减污降碳教育部工程研究中心, 湖北武汉 430079; 武汉轻工大学化学与环境工程学院, 湖北武汉 430023
    b中国地质大学(武汉)材料与化学学院, 太阳燃料实验室, 湖北武汉 430078
    c中国地质大学(武汉)材料与化学学院, 太阳燃料实验室, 湖北武汉430078
  • 收稿日期:2025-07-29 接受日期:2025-09-05 出版日期:2026-01-05 发布日期:2026-01-05
  • 通讯作者: 张建军,温丽丽
  • 基金资助:
    国家自然科学基金(22171097);国家自然科学基金(21771072);中央高校基本科研业务费专项资金(CCNU24JCPT019);催化转化与能源材料化学教育部重点实验室暨催化材料科学湖北省重点实验室开放基金(CHCL21001);华中师范大学教学研究项目(2025037)

S-scheme heterojunctions of metal-doped ZnIn2S4/TpPa-1: Regulating H adsorption/desorption and internal electric field for boosted dual-functional photocatalysis

Shaodan Wanga, Heng Yangb, Lijun Xuea, Jianjun Zhangc,*(), Shuxin Ouyanga, Lili Wena,*()   

  1. aEngineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
    bCollege of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
    cLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, Hubei, China
  • Received:2025-07-29 Accepted:2025-09-05 Online:2026-01-05 Published:2026-01-05
  • Contact: Jianjun Zhang, Lili Wen
  • Supported by:
    National Natural Science Foundation of China(22171097);National Natural Science Foundation of China(21771072);Fundamental Research Funds for the Central Universities(CCNU24JCPT019);fund of the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science(CHCL21001);Teaching Research Project of Central China Normal University(2025037)

摘要:

光催化水分解制氢是解决能源与环境问题的有效途径, 但受水氧化过程缓慢动力学的限制, 通常需要使用牺牲剂消耗空穴, 不符合绿色化学与可持续发展理念. 构建光催化分解水制氢耦合有机物氧化的双功能体系可实现氢能与高附加值化学品的同步生产. 但现有体系催化剂面临贵金属依赖、氧化还原能力不足、载流子分离效率低等问题. ZnIn2S4(ZIS)具备合适的能带结构, 但硫位点对氢吸附过强且载流子复合严重. 构建S型异质结是实现氧化还原能力最大化, 促进电荷分离的有效途径. 此外, 过渡金属掺杂可调控其电子结构, 优化氢吸附/脱附. 同时, 金属掺杂可提升ZIS费米能级, 进一步增强异质结内建电场, 有望协同提升光催化性能.

本文通过微波水热法将金属掺杂ZIS与TpPa-1 COF复合, 成功构建M-ZIS/TpPa-1 (M = Ni 或 Mo) S型异质结用于光催化产氢耦合苄胺氧化反应. 密度泛函理论计算表明, 金属掺杂可有效调控活性硫位点对氢的吸附/脱附. 相对于Ni-ZIS和ZIS, Mo-ZIS具有最合适的氢吸附吉布斯自由能, 最大程度下移的硫p带中心和最高的积分晶体轨道哈密顿布居(ICOHP)值, 有利于平衡氢吸附/脱附过程. 原位辐照X射线光电子能谱结果表明, M-ZIS/TpPa-1存在内建电场, 黑暗条件下, 电子由M-ZIS转移到TpPa-1; 光照下, 电子则由TpPa-1转移到M-ZIS, 符合S型异质结电荷转移机制. 紫外光电子能谱表明, 金属掺杂增大了M-ZIS与TpPa-1的费米能级差. 同时, 理论计算进一步证实S型异质结中内建电场的增强, Ni-ZIS和ZIS向TpPa-1的电荷转移量分别为0.20 e和0.18 e, Mo-ZIS向TpPa-1的电荷转移量更多, 为0.22 e. 光致发光光谱、时间分辨光致发光光谱、电化学测试及飞秒瞬态吸收光谱分析表明, 金属掺杂和S型异质结的构建显著促进载流子的高效分离和转移. 在可见光照射且无助催化剂条件下, 优化后的Mo0.01-ZIS/TpPa-1表现出优异的双功能光催化性能, 产氢速率和N-亚苄基苄胺生成速率分别达到1648和1812 μmol g-1 h-1. 该性能优于Ni0.048-ZIS/TpPa-1 (产氢速率: 1403 μmol g-1 h-1; N-亚苄基苄胺生成速率: 1375 μmol g-1 h-1), 并明显超过未掺杂的ZIS/TpPa-1体系(产氢速率: 976 μmol g-1 h-1; N-亚苄基苄胺生成速率: 953 μmol g-1 h-1). 此外, 催化剂在经五次循环测试后仍保持稳定的活性.

综上, 本文成功构建了基于金属掺杂ZIS和COFs的S型异质结光催化剂, 显著提升了光催化产氢耦合苄胺氧化性能. 该工作为通过金属掺杂策略调控S型异质结的氢吸附/脱附与内建电场强度, 实现高效双功能光催化剂的设计合成提供了新思路.

关键词: 共价有机框架, 金属掺杂ZnIn2S4, S型异质结, 氢吸附/脱附, 内建电场, 双功能光催化

Abstract:

Cooperative coupling of photocatalytic hydrogen generation with oxidative organic synthesis is promising in simultaneously producing sustainable energy and value-added chemicals. However, the photocatalytic activity is constrained by restricted redox potentials and insufficient photocarrier separation and transfer. Herein, we construct S-scheme heterojunctions based on metal-doped ZnIn2S4 and covalent organic frameworks, denoted as M-ZIS/TpPa-1 (M = Ni or Mo). Theoretical calculations demonstrated that Mo-ZIS possess optimum H adsorption Gibbs free energies, deeper downshift of sulfur p-band center and higher integrated crystal orbital Hamilton population (ICOHP) value than Ni-ZIS and ZIS to optimize H adsorption/desorption dynamics. Besides, metal-doping reasonably enhanced the interfacial charge transfer in heterostructures, identifying the enlarged internal electric field (IEF) in Mo-ZIS/TpPa-1 than Ni-ZIS/TpPa-1 and ZIS/TpPa-1. Moreover, experimental explorations of photoelectrochemical measurements, femtosecond transient absorption spectroscopy, in-situ irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance verified the facilitated photocarrier separation and migration in metal-doped S-scheme heterojunctions. Ultimately, Mo0.01-ZIS/TpPa-1 exhibited visible-light driven H2 evolution rate of 1648 μmol g−1 h−1 and N-benzylidenebenzylamine formation rate of 1812 μmol g−1 h−1, better than Ni0.048-ZIS/TpPa-1, and superior to parent ZIS/TpPa-1. This work might provide insights into the modulation of H adsorption/desorption behavior and IEF within S-scheme heterostructures via rational metal-doping strategy for efficient dual-functional photocatalysis.

Key words: Covalent organic frameworks, Metal-doped ZnIn2S4, S-scheme heterojunction, H adsorption/desorption, Internal electric field, Dual-functional photocatalysis