催化学报 ›› 2026, Vol. 81: 299-309.DOI: 10.1016/S1872-2067(25)64868-6

• 论文 • 上一篇    下一篇

可见光驱动的CdS/CuWO4 S型异质结析氢体系: 界面电荷转移与光热活化的双重协同增强

刘青桦a, 蔡培庆b, 李恒帅c, 冀学洋a(), 张大凤a(), 蒲锡鹏a()   

  1. a 聊城大学材料科学与工程学院, 山东省化学储能与新型电池技术重点实验室, 山东聊城 252000
    b 中国计量大学光学与电子技术学院, 浙江杭州 310018
    c 聊城大学物理科学与信息工程学院, 山东省光通信科学与技术重点实验室, 山东聊城 252000
  • 收稿日期:2025-07-10 接受日期:2025-08-22 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: jixy0422@126.com (冀学洋),dafengzh@hotmail.com (张大凤),xipengpu@hotmail.com (蒲锡鹏).
  • 基金资助:
    山东省自然科学基金(ZR2022ME179);山东省自然科学基金(ZR2024QB228);聊城大学博士项目研究基金(318052350)

Visible-light-driven hydrogen evolution over CdS/CuWO4 S-Scheme heterojunctions: Dual synergistic enhancement via interfacial charge transfer and photothermal activation

Qinghua Liua, Peiqing Caib, Hengshuai Lic, Xue-Yang Jia(), Dafeng Zhanga(), Xipeng Pua()   

  1. a School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, Shandong, China
    b College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, Zhejiang, China
    c School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, Shandong, China
  • Received:2025-07-10 Accepted:2025-08-22 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: jixy0422@126.com (X.-Y. Ji),dafengzh@hotmail.com (D. Zhang),xipengpu@hotmail.com (X. Pu).
  • Supported by:
    Shandong Province Natural Science Foundation(ZR2022ME179);Shandong Province Natural Science Foundation(ZR2024QB228);Doctoral Program of Liaocheng University(318052350)

摘要:

氢能因其清洁、高效的特性, 被视为实现“双碳”目标的终极能源载体. 其中, 利用太阳能驱动光催化裂解水制氢, 因其零碳排放和可持续性被认为是最具发展前景的制氢途径之一. 在各类光催化材料中, 硫化镉(CdS)凭借其适宜的带隙宽度和良好的可见光响应能力而受到广泛关注. 然而, 其存在光生载流子复合率高和光腐蚀现象严重等问题, 严重制约了其实际应用. 为克服上述限制, 研究者们提出了S型异质结概念. 该体系可实现光生载流子的高效空间分离并保持强氧化还原能力. 尽管如此, 如何精准调控界面电荷传输路径, 并协同利用物理效应提升催化反应动力学, 仍然是该领域面临的关键挑战.

针对上述问题, 本研究提出了一种“电荷-热”双通道协同增强机制, 即将具有光热效应的CuWO4纳米颗粒负载在CdS上, 构建具有光热效应的CdS/CuWO4 S型异质结. 该策略不仅通过S型异质结电荷转移机制实现了光生电子从CdS向CuWO4的高效迁移, 显著提升了光生载流子分离效率. 还利用CuWO4的光热效应实现对反应微环境的局域升温, 有效降低了反应活化能, 从而形成了“电荷-热”双通道协同增强机制. 性能测试结果表明, 在可见光照射下, 优化后的CdS/CW-10% S型异质结产氢速率达到2725.91 μmol g-1 h-1, 是纯CdS的10.1倍. 此外, 在实验结果和密度泛函理论的双重支持下, 提出并模拟了CdS与CuWO4界面处内建电场和能带弯曲的形成, 并揭示了CdS向CuWO4的S型异质结的电荷转移机制. 同时, 界面处形成的S-O-W键合通道可作为电子的快速传输路径, 进一步促进了光生载流子的分离. 光电化学进一步证明了复合材料的电荷转移阻抗显著降低, 这从实验上印证了理论计算结果. 另一方面, CuWO4的光热效应使催化剂表面的局域温度升高, 从而提升了催化反应动力学, 显著提升了光催化活性.

综上, 本研究通过“电荷-热”双通道协同增强机制, 成功实现了光生载流子的快速分离与局域升温, 显著提升了光催化裂解水析氢的性能. 该策略克服了单一调控方式的局限, 为设计高效、稳定的光催化体系提供了理论依据和实验参考.

关键词: S型异质结, 硫化镉, 钨酸铜, 光热, 光催化, 析氢

Abstract:

S-scheme heterojunctions can offer an effective strategy for spatially separating photogenerated charge carriers, thereby sigFnificantly enhancing photocatalytic performance. In this study, cadmium sulfide (CdS)/copper tungstate (CFuWO4) (CdS/CW) S-scheme heterojunction photocatalysts with adjustable components were fabricated by decorating CdS nanorods with CuWO4 nanoparticles. The optimal hydrogen evolution rate (2725.91 μmol g-1 h-1) of CdS/CW-10% with excellent cycling stability under visible light is 10.1-fold higher than pure CdS. Density functional theory calculations and photoelectrochemical analyses confirmed that the S-scheme charge-transfer mechanism from CdS to CuWO4 is responsible for the enhanced photocatalytic performance by promoting charge separation. Additionally, the photothermal effect of CuWO4 increased the local temperature of the photocatalyst, further accelerating the reaction kinetics. This study highlights a dual-enhancement approach based on interfacial charge modulation by constructing an S-scheme heterojunction and photothermal activation, providing valuable insights into the design of high-efficiency S-scheme photocatalysts for solar-driven hydrogen production.

Key words: S-Scheme heterojunction, CdS, CuWO4, Photothermal, Photocatalyst, Hydrogen evolution