催化学报 ›› 2026, Vol. 81: 227-245.DOI: 10.1016/S1872-2067(25)64866-2

• 论文 • 上一篇    下一篇

构建MXene衍生TiO2/CoNiO2双位点S型异质结: 助力C-C偶联以实现高效光催化CO2转化为C2H4

胡永盛a, 杜史记a,c, 郎集会a,b, 刘恵莲a,b, 李雪飞a,b, 张旗a,b, 鲁铭a,c, 李鑫a,b,c(), 李彬榕d(), 魏茂彬a,b(), 杨丽丽a,b()   

  1. a 吉林师范大学物理学院, 功能材料物理与化学教育部重点实验室, 吉林长春 130103
    b 吉林师范大学国家级物理实验教学示范中心, 吉林四平 136000
    c 吉林师范大学功能材料物理与化学教育部重点实验室, MAX/MXene材料联合实验室, 吉林长春 130103
    d 城市生活污水资源化利用技术国家地方联合工程实验室, 苏州科技大学环境科学与工程学院, 江苏苏州 215009
  • 收稿日期:2025-07-20 接受日期:2025-09-18 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: xlwl@jlnu.edu.cn (李鑫),libr@usts.edu.cn (李彬榕),jlsdzccw@126.com (魏茂彬),llyang1980@126.com (杨丽丽).
  • 基金资助:
    国家自然科学基金(22378158);国家自然科学基金(22306142);吉林省科学技术发展项目(YDZJ202301ZYTS246);吉林省科学技术发展项目(20230508040RC);吉林省科学技术发展项目(20240601047RC);吉林省中青年科技创新团队培养计划(20250601083RC);吉林省发展和改革委员会工业技术与发展计划(2023C44-4);吉林省教育厅科学技术处项目(JJKH20250941KJ);江苏省自然科学基金(BK20230656)

Rational construction of MXene-derived TiO2/CoNiO2 dual-site S-scheme heterojunction for boosting C-C coupling toward efficient photocatalytic CO2-to-C2H4 conversion

Yongsheng Hua, Shiji Dua,c, Jihui Langa,b, Huilian Liua,b, Xuefei Lia,b, Qi Zhanga,b, Ming Lua,c, Xin Lia,b,c(), Binrong Lid(), Maobin Weia,b(), Lili Yanga,b()   

  1. a Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
    b National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, Jilin, China
    c The Joint Laboratory of MAX/MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
    d National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Received:2025-07-20 Accepted:2025-09-18 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: xlwl@jlnu.edu.cn (X. Li),libr@usts.edu.cn (B. Li),jlsdzccw@126.com (M. Wei),llyang1980@126.com (L. Yang).
  • Supported by:
    program for the National Natural Science Foundation of China(22378158);program for the National Natural Science Foundation of China(22306142);development of Science and Technology of Jilin province(YDZJ202301ZYTS246);development of Science and Technology of Jilin province(20230508040RC);development of Science and Technology of Jilin province(20240601047RC);Cultivation Programme for Young and Middle-aged Innovative Teams in Science and Technology of Jilin Province(20250601083RC);program for the Industrial Technology and Development of Jilin Province Development and Reform Commission(2023C44-4);program for the Science and Technology of Education Department of Jilin Province(JJKH20250941KJ);Jiangsu Provincial Natural Science Foundation(BK20230656)

摘要:

乙烯(C2H4)作为重要的化工原料之一, 其传统生产方法主要依赖石油烃类裂解, 消耗不可再生能源的同时, 还伴随大量碳排放. 而光催化CO2还原(CO2RR)转化C2H4技术, 既能实现温室气体CO2的资源化利用, 又能够在温和条件下实现C2H4的制备. 该技术仍面临两大挑战: 其一是由于*C1中间体间存在过高的C-C偶联能垒, 导致产物多以C1产物形式解吸, 从而限制了C2+产物的生成; 其二是电子(e-)和质子(H+)供应动力学缓慢. C2H4的光催化生成是一个多步过程, 涉及复杂的质子耦合电子转移(PCET)过程. 因此, 快速的e-和H+产生与供给是实现高效CO2RR的关键因素之一. 然而, 过快的载流子复合与较高的界面传输能垒直接影响着催化剂的CO2RR速率.

针对上述分析, 本研究设计了一种由MXene衍生TiO2 (MT)和CoNiO2 (CNO)构成的TiO2/CoNiO2 (MTC) S型异质结体系. 该设计的核心思想在于: 利用CNO本征的Co-Ni邻位异核双原子位点来降低C-C偶联的能垒, 同时构建S型异质结以克服CNO自身光生载流子复合率高、H2O氧化能力弱的不足, 从而进一步提升C-C偶联速率. 结果表明, Co-Ni双位点与S型异质结之间的协同作用有效促进了CO2向C2H4的高选择性还原. 实验发现, MTC-2(理论质量比为10:1)样品表现出最优的CO2光还原制C2H4性能: 在紫外-可见光光照条件下, 其C2H4产率达到25.2 μmol/(g·h), 相较于纯CoNiO2催化剂提升约23倍. 同时, MTC-2对C2H4的选择性高达59.4%, 该样品展现出优异的催化活性与产物选择性. 结合光电化学测试、原位X射线光电子能谱、原位开尔文探针显微镜、飞秒瞬态吸收光谱以及差分电荷密度计算, 验证了MTC-2复合物界面间S型异质结的成功构建. 通过原位傅里叶变换红外光谱和吉布斯自由能计算, 确定了*COCOH转化*CCO是CO2RR转化C2H4的限速步骤, 从理论层面阐明了Co-Ni双位点结构与S型异质结协同促进C-C偶联动力学过程的增强机制.

综上, 本研究通过Co-Ni双位点配合S型异质结的协同策略, 成功优化了CO2RR转化C2H4过程中C-C偶联能垒高与电子、质子供给效率低的关键问题, 不仅提供了一种高性能MTC-2催化剂的制备方法, 更通过系统的表征与理论计算, 揭示了Co-Ni双位点与S型异质结协同增强C-C偶联效率的作用规律, 为设计具有高活性、高选择性的CO2光还原制C2H4催化体系提供了新的实验参考与理论依据.

关键词: 光还原二氧化碳, 镍酸钴, Ti3C2 MXene, S型异质结

Abstract:

The CO2 photoreduction reaction (CO2RR) into C2H4 represents a highly promising technology for converting greenhouse gases into value-added chemicals. However, this technology faces challenges such as a high energy barrier in the C-C coupling process and a slow electron supply efficiency. In this study, we constructed Ti3C2 MXene-derived TiO2/CoNiO2 S-scheme heterojunction (MTC-X) by a simple in-situ growth process. The Co-Ni dual-site provided the structural foundation for C-C coupling, effectively reducing the energy barrier of the *CO-*COH intermediate coupling step. Meanwhile, the S-scheme heterojunction ensured the rapid supply of electrons and protons during the CO2RR, thereby enabling the efficient conversion of CO2 to C2H4. Notably, the MTC-2 sample exhibited the C2H4 production rate of 25.2 μmol·g-1·h-1, which was 23 times higher than that of the pure CoNiO2. In summary, by combining in-situ X-ray photoelectron spectroscopy, in-situ Kelvin probe force microscopy, femtosecond transient absorption spectroscopy and difference charge density calculation, confirmed the formation of the TiO2/CoNiO2 S-scheme heterojunction. Further, by photoelectrochemical tests, in-situ Fourier transform infrared spectroscopy, Gibbs free-energy calculations, elucidated the mechanism by which the Co-Ni dual-site structure and S-scheme heterojunction synergistically enhance the C-C coupling kinetic process. This provides new experimental reference and theoretical basis for the selective conversion of CO2 to C2H4.

Key words: CO2 photoreduction, CoNiO2, Ti3C2 MXene, S-scheme heterojunction