催化学报 ›› 2026, Vol. 80: 123-134.DOI: 10.1016/S1872-2067(25)64830-3

• 论文 • 上一篇    下一篇

双功能ZnxCd1-xSy/FePS3阶梯(S)型异质结增强光催化产氢与苯甲醛性能

陈润东a, 张宇航a, 夏兵全a,*(), 周贤龙b, 张彦昭c,*(), 刘善堂a,*()   

  1. a武汉工程大学化学与环境工程学院, 磷矿及其共伴生资源绿色高效开发利用全国重点实验室, 湖北武汉 430074, 中国
    b南京林业大学化学工程学院, 江苏省林业资源高效加工利用协同创新中心, 江苏南京 210037, 中国
    c昆士兰大学化学工程学院, 纳米材料中心及澳大利亚生物工程与纳米技术研究所, 昆士兰州圣卢西亚, 澳大利亚
  • 收稿日期:2025-06-08 接受日期:2025-07-25 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 夏兵全,张彦昭,刘善堂
  • 基金资助:
    国家自然科学基金(22409151);国家自然科学基金(22402083);武汉工程大学科学研究基金(23QD02);武汉工程大学研究生教育创新基金(CX2024003)

Enhanced photocatalytic production of hydrogen and benzaldehyde over a dual-function ZnxCd1-xSy/FePS3 S-scheme heterojunction

Rundong Chena, Yuhang Zhanga, Bingquan Xiaa,*(), Xianlong Zhoub, Yanzhao Zhangc,*(), Shantang Liua,*()   

  1. aState Key Laboratory of Green and Efficient Development of Phosphorus Resources, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
    bJiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
    cNanomaterials Center, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
  • Received:2025-06-08 Accepted:2025-07-25 Online:2026-01-18 Published:2026-01-05
  • Contact: Bingquan Xia, Yanzhao Zhang, Shantang Liu
  • Supported by:
    National Natural Science Foundation of China(22409151);National Natural Science Foundation of China(22402083);Science Foundation of Wuhan Institute of Technology(23QD02);Project of Graduate Education Innovation Fund of Wuhan Institute of Technology(CX2024003)

摘要:

光催化技术作为一种绿色可持续的能源转化手段, 在应对全球能源危机、推动清洁能源转换方面展现出巨大潜力, 其利用太阳能驱动化学反应, 可实现氢燃料生产、有机化合物转化等重要过程, 符合低碳发展的时代需求. 然而, 传统光催化体系普遍存在光生电子-空穴对复合速率快、光吸收效率低等问题, 严重制约了催化性能的提升, 成为该领域发展的关键瓶颈.

为解决传统光催化体系的缺陷, 本研究创新性地构建了一种将ZnxCd1-xSy (ZCS)纳米晶与FePS3 (FPS)纳米片结合的S型异质结, 旨在同步提升光催化析氢效率与苯甲醇向苯甲醛的转化性能. 本工作通过异质结界面的电荷定向转移机制, 有效抑制光生载流子复合, 同时增强对可见光的捕获能力. 实验结果表明, 优化后的ZCS/FPS-15 (ZCSF-15)异质结表现出优异的催化性能, 在420 nm紫外光照射下, 其析氢速率达到73.06 mmol g-1 h-1, 苯甲醛生成速率达46.68 mmol g-1 h-1, 分别是纯ZCS的22.34倍和53.65倍, 性能提升显著. 为揭示其高效催化的内在机制, 采用多种原位表征技术和理论计算对反应途径和电荷转移机理进行分析. 通过原位漫反射红外傅里叶变换光谱和吉布斯自由能计算明确了苯甲醇氧化的反应路径. 原位X射线光电子能谱和原子力显微镜-开尔文探针力显微镜, 系统探究了异质结界面的电荷转移动力学, 证实了S型电荷转移路径可有效分离光生电子与空穴, ZCSF-15分别保留ZCS的强还原性与FPS的氧化性, 从而加速析氢反应与苯甲醇选择性氧化反应的进行. 结果表明, ZCS与FPS形成的S型异质结通过协同增强光吸收、促进电荷分离等方式, 实现了双功能催化性能的大幅提升, 为同时高效生产氢燃料与高价值有机化学品提供了可行的体系模型.

综上, 本研究建立的双功能S型异质结模型, 为设计兼具绿色燃料生产与选择性有机合成能力的光催化体系提供了重要参考, 同时为非贵金属光催化材料的开发与实际应用开辟新路径.

关键词: S型异质结, 光催化, 析氢, 太阳能转化, 化学增值

Abstract:

Photocatalysis is deemed a green approach to sustainable energy conversion with great promise for addressing future energy challenges. However, traditional photocatalytic systems are often inhibited by rapid recombination of photogenerated electron-hole pairs and low light-harvesting efficiency. To overcome these challenges, an S-scheme heterojunction integrating ZnxCd1-xSy (ZCS) nanocrystals with FePS3 (FPS) nanosheets was designed to facilitate both photocatalytic hydrogen evolution and the conversion of benzyl alcohol to benzaldehyde (BAD). The obtained ZCS/FPS-15 (ZCSF-15) heterostructure exhibits remarkable visible-light-harvesting enhancement and charge separation efficiency, delivering a hydrogen evolution rate of 73.06 mmol g-1 h-1 and a BAD production rate of 46.68 mmol g-1 h-1, corresponding to 22.34- and 53.65-fold performance enhancements, respectively, compared with that of bare ZCS. To reveal the charge transfer dynamics and clarify the reaction mechanisms, in-situ diffuse-reflectance Fourier-transform infrared spectroscopy was used to identify key oxidation intermediates, coupled with interfacial charge transfer dynamics probed using in-situ X-ray photoelectron spectroscopy and atomic force microscopy-Kelvin probe force microscopy. This work establishes a dual-function heterojunction model, offering valuable insights into how to design S-scheme heterojunctions for simultaneous green fuel generation and selective organic synthesis.

Key words: S-scheme heterojunction, Photocatalysis, Hydrogen evolution, Solar energy conversion, Chemical valorization