催化学报 ›› 2026, Vol. 80: 20-37.DOI: 10.1016/S1872-2067(25)64869-8
张金鹏a,1, 梁腾b,1, 陈恬a, 郭美君a, 余乐a, 佘萍b,*(
), 冉景润a,*(
)
收稿日期:2025-07-30
接受日期:2025-09-10
出版日期:2026-01-18
发布日期:2026-01-05
通讯作者:
佘萍,冉景润
作者简介:第一联系人:1共同第一作者
基金资助:
Jinpeng Zhanga,1, Teng Liangb,1, Jaenudin Ridwana, Tian Chena, Elhussein M. Hashema, Meijun Guoa, Amin Talebian-Kiakalaieha, Le Yua, Ping Sheb,*(
), Jingrun Rana,*(
)
Received:2025-07-30
Accepted:2025-09-10
Online:2026-01-18
Published:2026-01-05
Contact:
Ping She, Jingrun Ran
About author:Ping She (College of Chemistry, Jilin University) received her bachelor’s degree from Jilin University in 2014. In 2018, she obtained her Ph.D. degree in engineering from Jilin University. She then completed post-doctoral work at Jilin University (Post Doctoral Innovative Talent Support Program of China from 2018 to 2021). Her research focuses on inorganic porous nanomaterial-based catalysis evolution.Supported by:摘要:
当前, 全球能源结构仍主要依赖传统的不可再生化石燃料, 其过度使用引发了严重的能源危机, 并显著阻碍了全球可持续发展进程. 此外, 能源领域的温室气体排放约占全球排放总量的四分之三, 是全球应对气候变化的主要挑战之一. 在此背景下, 氢能因其清洁性、高能量密度和良好储存性, 被视为未来理想的能源载体. 光催化整体水分解因能直接利用可再生太阳能并实现零碳排放, 被认为是绿色制氢的理想途径. 塑料光重整与产氢耦合, 不仅能显著提高产氢速率, 还能将废塑料转化为有价值的小分子化学品, 同时解决能源与环境困境. 然而, 该领域仍处于探索阶段, 缺乏系统性总结与实际应用导向的研究框架. 因此, 需要密切关注该技术的关键环节, 以推动此技术走向实际应用.
本文首先简要介绍了塑料光重整与产氢耦合的基本原理; 然后, 总结了目前常用的塑料预处理策略: 物理、化学和生物预处理. 随后, 结合一些典型案例, 系统阐述当前在光催化剂设计中所采用的多种策略, 包括增强底物吸附、优化光吸收性能、促进电荷分离与传输、提升结构与反应稳定性、降低制备与生产成本以及利用人工智能与机器学习指导催化剂探索. 详细分析了太阳跟踪聚光装置、光催化反应器以及光催化模块的运行参数对实现实际应用的关键作用; 此外, 介绍了技术经济分析和生命周期在评估塑料光重整与产氢耦合实际应用的可行性与可持续性方面的关键作用; 最后, 重点讨论了该领域当前存在的挑战与发展机遇: (1) 需要更加经济、环保、高效的预处理策略; (2) 具有更高活性、稳定性和氧化选择性的光催化剂对于其实际应用至关重要; (3) 目前研究大多集中在光催化剂的评估, 而忽视了对反应器的研究, 未来需要探索新型反应器, 以满足实际应用的需要; (4) 混合组分塑料的研究应该被关注; (5) 光催化领域尚缺乏统一的光源标准, 而建立统一的辐照条件有望加速该领域的发展与成果的可比性; (6) 模块的组合需要跨学科的合作.
总体而言, 本文构建了塑料光重整的系统性框架, 为该技术从实验探索向实际应用转化提供了依据与指引, 同时也为实现绿色氢能开发与塑料资源化利用的双重目标提供一定的参考和借鉴.
张金鹏, 梁腾, 陈恬, 郭美君, 余乐, 佘萍, 冉景润. 实现塑料光重整与产氢耦合实际应用的关键要素[J]. 催化学报, 2026, 80: 20-37.
Jinpeng Zhang, Teng Liang, Jaenudin Ridwan, Tian Chen, Elhussein M. Hashem, Meijun Guo, Amin Talebian-Kiakalaieh, Le Yu, Ping She, Jingrun Ran. Key components for realistic application of plastic photoreforming coupled with H2 evolution[J]. Chinese Journal of Catalysis, 2026, 80: 20-37.
Fig. 3. (a) Mechanical pretreatment of plastics to reduce plastic size. Reprinted with permission from Ref. [21]. Copyright 2024, Wiley-VCH. (b) Plasma pretreatment cleaves C-H bonds and forms -OH, O-C=O, and C=O groups in PE. Reprinted with permission from Ref. [29]. Copyright 2023, Wiley-VCH. (c) PE is hydrolyzed to dicarboxylic acid after pretreatment with HNO3. Reprinted with permission from Ref. [30]. Copyright 2022, American Chemical Society. (d) Mechanism of EG and TPA from PET pretreated with KOH. Reprinted with permission from Ref. [31]. Copyright 2023, American Chemical Society. (e) The monomers are obtained at the optimum pretreatment temperatures of LCC and Dura in 100 mmol L?1 carbonate buffer solution with pH = 8.5, respectively, and the influence of different pretreatment conditions (including plastic size, pretreatment method and time) on the depolymerization effect of plastics. Reprinted with permission from Ref. [32]. Copyright 2023, American Chemical Society.
| Photocatalysts | Light source | Plastic | Rate max. (H2) | Chemicals | Stability (h) | Ref. |
|---|---|---|---|---|---|---|
| CdS/CdOx | solar simulator | PET PLA PUR | 12.4 ± 2.0 mmol g-1 h-1 64.3 ± 14.7 mmol g-1 h-1 3.22 ± 0.13 mmol g-1 h-1 | formate, glycolate, ethanol, acetate, lactate Pyruvate-based formate, acetate, pyruvate, lactate | 144 | [ |
| BiVO4/MoOx | 300 W Xe lamp | PET | 1.96 mmol g-1 h-1 | formate, acetate | 25 | [ |
| CPDs-C3N4 | 300 W Xe lamp | PET PLA | 1034 ± 134 μmol g−1 h−1 1326 ± 181 μmol g−1 h−1 | glycolic acid, glycolaldehyde, ethanol — | 216 | [ |
| NiCo2S3-ZnxCd1-xS | 300 W Xe lamp | PET PLA | 57.0 mmol g−1 h−1 106.0 mmol g−1 h−1 | formate, glycolate, acetate pyruvate, acetate | 45 | [ |
| FeSA-hCN | 300 W Xe lamp | PE | 42 μmol h-1 | carboxylic acid, ether, alkane, furanone | 144 | [ |
| MoS2/CdS | solar simulator | PET PLA PE | 3.90 ± 0.07 mmol g-1 h-1 6.68 ± 0.10 mmol g-1 h-1 1.13 ± 0.06 mmol g-1 h-1 | formate, acetate, glycolate formate formic acid | 200 | [ |
| O-CuIn5S8 | 300 W Xe lamp | PET | 2.57 ± 0.02 mmol g−1 h−1 | formate, acetate, glycolate | 25 | [ |
| PCN/WO3 | 300 W Xe lamp | PLA | 402.09 μmol g−1 h−1 | acetate, formate | 24 | [ |
| Cu/TiO2 | Solar simulator | PET | 193.6 μmol g−1 h−1 | formate, acetate, glycollate, lactate | 25 | [ |
| Pd-CdS | 300 W Xe lamp | PLA | 49.8 μmol g−1 h−1 | pyruvic acid-based | >100 | [ |
| d-NiPS3/CdS | 300 W Xe lamp | PET PLA | 31.38 mmol g-1 h-1 39.76 mmol g-1 h-1 | formate, acetate, glycolate acetate, pyruvate-based | >100 | [ |
| T-ZnSe | 300 W Xe lamp | PET PLA | 42 μmol h−1 54 μmol h−1 | formate, acetate, lactate, ethanol acetate, propionate-based | 12 | [ |
| CNx|Ni2P | Solar simulator | PET PLA | 31.2 μmol g-1 h-1 32.9 μmol g-1 h-1 | formate, glyoxal, glycolate, acetate formate, acetate | 120 | [ |
| Ni2P/ZnIn2S4 | 4 × 25W, LED | PLA PET PTT PBT | 781.3 μmol g−1 h−1 686.1 μmol g−1 h−1 519.4 μmol g−1 h−1 330.0 μmol g−1 h−1 | pyruvic acid glycolate, formate, acetate malonate, 3-hydroxypropionate succinate, 4-hydroxybutyrate | 20 | [ |
| Pt/g-C3N4 | Solar simulator | PET | 2000 μmol g−1 h−1 | formic acid, acetic acid | 20 | [ |
| Cu-SA/TiO2 NPs | 122 mW cm-2 | PET | 3.45 mmol h-1 m-2 | — | 336 | [ |
| Pt1/TiO2 PtNPs/TiO2 | 300 W Xe lamp 300 W Xe lamp | PET PET | 51.8 μmol g−1 h−1 219.1 μmol g−1 h−1 | glyoxal, glyoxylate, lactate, acetate acetate | 120 120 | [43] [43] |
| CN-CNTs-NiMo | 500 W Xe lamp | PET | 90 μmol g−1 h−1 | glyoxal, glycolate | 20 | [ |
| ZnZn-Salen-Ni COF | 300 W Xe lamp | PET | 421.46 μmol g−1 h−1 | formic acid | 48 | [ |
| Pt SA/BCN100 | 300 W Xe lamp | PLA | 993 μmol g−1 h−1 | acetic acid | 16 | [ |
| Ni3S4/ZnCdS | 300 W Xe lamp | PLA | 27.9 mmol g-1 h-1 | pyruvate, acetate | 15 | [ |
| PET | 17.4 mmol g-1 h-1 | acetate, glycolate, formate | ||||
| NiSA/CeO2 | 300 W Xe lamp | PE | 0.23 mmol h-1 | propionic acid, adipic acid | 12 | [ |
Table 1 Photocatalysts for plastic photoreforming.
| Photocatalysts | Light source | Plastic | Rate max. (H2) | Chemicals | Stability (h) | Ref. |
|---|---|---|---|---|---|---|
| CdS/CdOx | solar simulator | PET PLA PUR | 12.4 ± 2.0 mmol g-1 h-1 64.3 ± 14.7 mmol g-1 h-1 3.22 ± 0.13 mmol g-1 h-1 | formate, glycolate, ethanol, acetate, lactate Pyruvate-based formate, acetate, pyruvate, lactate | 144 | [ |
| BiVO4/MoOx | 300 W Xe lamp | PET | 1.96 mmol g-1 h-1 | formate, acetate | 25 | [ |
| CPDs-C3N4 | 300 W Xe lamp | PET PLA | 1034 ± 134 μmol g−1 h−1 1326 ± 181 μmol g−1 h−1 | glycolic acid, glycolaldehyde, ethanol — | 216 | [ |
| NiCo2S3-ZnxCd1-xS | 300 W Xe lamp | PET PLA | 57.0 mmol g−1 h−1 106.0 mmol g−1 h−1 | formate, glycolate, acetate pyruvate, acetate | 45 | [ |
| FeSA-hCN | 300 W Xe lamp | PE | 42 μmol h-1 | carboxylic acid, ether, alkane, furanone | 144 | [ |
| MoS2/CdS | solar simulator | PET PLA PE | 3.90 ± 0.07 mmol g-1 h-1 6.68 ± 0.10 mmol g-1 h-1 1.13 ± 0.06 mmol g-1 h-1 | formate, acetate, glycolate formate formic acid | 200 | [ |
| O-CuIn5S8 | 300 W Xe lamp | PET | 2.57 ± 0.02 mmol g−1 h−1 | formate, acetate, glycolate | 25 | [ |
| PCN/WO3 | 300 W Xe lamp | PLA | 402.09 μmol g−1 h−1 | acetate, formate | 24 | [ |
| Cu/TiO2 | Solar simulator | PET | 193.6 μmol g−1 h−1 | formate, acetate, glycollate, lactate | 25 | [ |
| Pd-CdS | 300 W Xe lamp | PLA | 49.8 μmol g−1 h−1 | pyruvic acid-based | >100 | [ |
| d-NiPS3/CdS | 300 W Xe lamp | PET PLA | 31.38 mmol g-1 h-1 39.76 mmol g-1 h-1 | formate, acetate, glycolate acetate, pyruvate-based | >100 | [ |
| T-ZnSe | 300 W Xe lamp | PET PLA | 42 μmol h−1 54 μmol h−1 | formate, acetate, lactate, ethanol acetate, propionate-based | 12 | [ |
| CNx|Ni2P | Solar simulator | PET PLA | 31.2 μmol g-1 h-1 32.9 μmol g-1 h-1 | formate, glyoxal, glycolate, acetate formate, acetate | 120 | [ |
| Ni2P/ZnIn2S4 | 4 × 25W, LED | PLA PET PTT PBT | 781.3 μmol g−1 h−1 686.1 μmol g−1 h−1 519.4 μmol g−1 h−1 330.0 μmol g−1 h−1 | pyruvic acid glycolate, formate, acetate malonate, 3-hydroxypropionate succinate, 4-hydroxybutyrate | 20 | [ |
| Pt/g-C3N4 | Solar simulator | PET | 2000 μmol g−1 h−1 | formic acid, acetic acid | 20 | [ |
| Cu-SA/TiO2 NPs | 122 mW cm-2 | PET | 3.45 mmol h-1 m-2 | — | 336 | [ |
| Pt1/TiO2 PtNPs/TiO2 | 300 W Xe lamp 300 W Xe lamp | PET PET | 51.8 μmol g−1 h−1 219.1 μmol g−1 h−1 | glyoxal, glyoxylate, lactate, acetate acetate | 120 120 | [43] [43] |
| CN-CNTs-NiMo | 500 W Xe lamp | PET | 90 μmol g−1 h−1 | glyoxal, glycolate | 20 | [ |
| ZnZn-Salen-Ni COF | 300 W Xe lamp | PET | 421.46 μmol g−1 h−1 | formic acid | 48 | [ |
| Pt SA/BCN100 | 300 W Xe lamp | PLA | 993 μmol g−1 h−1 | acetic acid | 16 | [ |
| Ni3S4/ZnCdS | 300 W Xe lamp | PLA | 27.9 mmol g-1 h-1 | pyruvate, acetate | 15 | [ |
| PET | 17.4 mmol g-1 h-1 | acetate, glycolate, formate | ||||
| NiSA/CeO2 | 300 W Xe lamp | PE | 0.23 mmol h-1 | propionic acid, adipic acid | 12 | [ |
Fig. 4. (a) Chronological development of photocatalysts for plastic reforming. Reprinted with permission from Ref. [19,33]. Copyright 2018 and 2023, Royal Society of Chemistry. Reprinted with permission from Ref. [30,32,36,37,39,41,46]. Copyright 2019, 2022, 2023, 2024 and 2025, American Chemical Society. Reprinted with permission from Ref. [35]. Copyright 2024, Elsevier. Reprinted with permission from Refs. [47,49]. Copyright 2021 and 2025, Wiley. (b) Trends in publications in recent years related to the keywords “photocatalysis” include “plastic” (The data based on Web of Science). (c) Schematic image of photocatalyst exploration for plastic photo-reforming.
Fig. 5. (a) Schematic illustration of BiVO4/MoOx photoreforming pretreated PET plastic into H2 and chemicals. (b) Effect of MoOx loading on H2O-TPD results. Reprinted with permission from Ref. [22]. Copyright 2024, Elsevier. (c) Theoretical diagram of O doping site in CuIn5S8. (d) Band structure diagram of CuIn5S8 before and after doping with O. Reprinted with permission from Ref. [33]. Copyright 2023, Royal Society of Chemistry. (e) Theoretical model of heterostructure photocatalyst MoS2/CdxZn1-xS containing CdxZn1-xS solid solution. (f) Effect of Cd/Zn content ratio in CdxZn1-xS on band structure. Reprinted with permission from Ref. [49]. Copyright 2021, Wiley-VCH. (g) Cell structure of anatase TiO2 and Au/TiO2 (after doping Au nanoparticles). (h) Absorption spectra of TiO2 and Au/TiO2. Reprinted with permission from Ref. [50]. Copyright 2023, Elsevier.
Fig. 6. (a) Synthesis illustration of PCN/WO3 heterostructure photocatalysts. (b) Z-scheme charge transfer mechanism in PCN/WO3 heterostructure. Reprinted with permission from Ref. [34]. Copyright 2024, Springer Nature. (c) Preparation procedure of Cu1-O4 SAC. (d) Photocatalysis process over SACs. Reprinted with permission from Ref. [35]. Copyright 2024, Elsevier. (e) H2 yield of CdS loaded with different cocatalysts after 8 h photo-reforming. (f) k2-weighted Pd K-edge Fourier-transformed EXAFS spectra of different Pd species in R space. Reprinted with permission from Ref. [36]. Copyright 2024, American Chemical Society. (g) HAADF-STEM image of T-ZnSe. (h) XRD patterns of T-ZnSe and S-ZnSe. H2 (i) and organic acid (j) yields from PLA and PET photo-reforming by T-ZnSe and S-ZnSe. Reprinted with permission from Ref. [38]. Copyright 2024, Royal Society of Chemistry.
Fig. 7. (a) Schematic image of floatable photocatalytic nanocomposites. (b) H2 evolution through PET reforming. Reprinted with permission from Ref. [42]. Copyright 2023, Springer Nature. (c) Schematic of the conversion to single atom and nanoparticles on CeO2 (100) and CeO2 (111), respectively. Reprinted with permission from Ref. [77]. Copyright 2022, Wiley. (d) Preparation process of PDMS microreactor. Reprinted with permission from Ref. Copyright 2023, Elsevier. Continuous flow (e) and batch preparation routes (f). Reprinted with permission from Refs. [78,79]. Copyright 2023, Elsevier.
Fig. 8. (a) Schematic diagram of a machine learning process. Reprinted with permission from Ref. [90]. Copyright 2023, Springer Nature. (b) Theoretical calculation guided by AI. Reprinted with permission from Ref. [91]. Copyright 2025, Wiley. (c) A machine learning and AI-guided photocatalysis experimental platform. Reprinted with permission from Ref. [93]. Copyright 2024, Science.
Fig. 10. (a) Concentrated solar power technology for promoting photocatalytic reactions. Reprinted with permission from Ref. [101]. Copyright 2024, MDPI. Image of suspended reactor (b) (Reprinted with permission from Ref. [39]. Copyright 2019, American Chemical Society) and immobilized reactor (c) (Reprinted with permission from Ref. [32]. Copyright 2023, American Chemical Society).
Fig. 11. (a) Pilot plant model for photoreforming of mixed waste (plastic, food waste, and biomass). (b) A sensitivity analysis was conducted for each parameter with respect to H2 production cost, carbon footprint, and EROI (blue indicating optimistic scenarios; red indicating pessimistic scenarios). The hollow circles in the ‘catalyst reuse’ section illustrate the impact of utilizing the more expensive TiO2|Pt photocatalyst in H2O. Photoreforming in 1 mol L?1 NaOH is examined only in the ‘NaOH reuse’ case. Reprinted with permission from Ref. Copyright 2020, Springer Nature [4].
|
| [1] | 陈润东, 张宇航, 夏兵全, 周贤龙, 张彦昭, 刘善堂. 双功能ZnxCd1-xSy/FePS3阶梯(S)型异质结增强光催化产氢与苯甲醛性能[J]. 催化学报, 2026, 80(1): 123-134. |
| [2] | 张璇, 周林, 闫腾, 张晓虎, 陈浩. S型共价有机框架/Ni-ZIF-8异质结的构筑及其光催化制氢性能[J]. 催化学报, 2026, 80(1): 200-212. |
| [3] | 宋鑫, 李中华, 盛利, 刘扬. 单原子催化剂中自旋密度对称性破缺介导的析氢反应[J]. 催化学报, 2026, 80(1): 213-226. |
| [4] | 张琳星, 谭昌龙, 祁明雨, 唐紫蓉, 徐艺军. 小分子光催化C-N偶联反应[J]. 催化学报, 2026, 80(1): 7-19. |
| [5] | 梁舒淇, 肖针, 沈锦妮, 戴文新, 张子重. AgPd-Co3O4级联活性位点调节•OH生成促进光催化甲烷制甲醇[J]. 催化学报, 2026, 80(1): 189-199. |
| [6] | 徐燕东, 景子慧, 苏雯皓, 徐加乐, 王明亮. B-TiO2@COF S型双功能光催化剂上过氧化氢生产与糠酸合成的协同耦合效应[J]. 催化学报, 2026, 80(1): 135-145. |
| [7] | 王少单, 杨恒, 薛丽君, 张建军, 欧阳述昕, 温丽丽. 金属掺杂ZnIn2S4/TpPa-1 S型异质结: 通过调控氢吸附/脱附和内建电场促进双功能光催化[J]. 催化学报, 2026, 80(1): 159-173. |
| [8] | 蒋浩朋, 李金河, 于晓慧, 董慧龙, 王伟康, 刘芹芹. β-酮烯胺共价键桥接的S型异质结实现同步光还原CO2为CO以及茴香醇选择性氧化为茴香醛[J]. 催化学报, 2026, 80(1): 113-122. |
| [9] | 李世杰, 李蕊, 董珂欣, 刘艳萍, 于欣, 李文尧, 刘通, 赵再望, 张明义, 张宾, 陈晓波. 自漂浮Bi4O5Br2/磷掺杂氮化碳/碳纤维布S型异质结光催化剂增强去除新兴有机污染物[J]. 催化学报, 2025, 76(9): 37-49. |
| [10] | 季碧铖, 李希成, 高帅, 秦泽平, 汪长征, 王强, 王崇臣. 自发极化增强的空心球Bi4Ti3O12促进高效压电光催化: 构效关系与降解机制[J]. 催化学报, 2025, 76(9): 133-145. |
| [11] | 封波, 冯丹宁, 裴燕, 宗保宁, 乔明华, 李伟. 缺陷氮化碳负载铜单原子用于高选择性光催化氧化甲烷制甲醇[J]. 催化学报, 2025, 76(9): 96-107. |
| [12] | 钟威, 孟爱云, 蔡旭东, 甘义遥, 王敬涛, 苏耀荣. Co诱导不对称电荷分布弱化S-Had键增强NiCoS助剂的光催化制氢性能[J]. 催化学报, 2025, 76(9): 108-119. |
| [13] | 郑相阳, 吴金往, 史海峰. 双空位诱导极化场与内建电场增强的S型异质结用于去除抗生素及六价铬[J]. 催化学报, 2025, 76(9): 50-64. |
| [14] | 李正, 曾影, 董媛媛, 吕红金, 杨国昱. 十钨酸盐+Pd/C催化体系中金属/H+位点的调控用于光催化生成糠基乙醚[J]. 催化学报, 2025, 75(8): 137-146. |
| [15] | 熊祺, 史全全, 王彬力, 李杲. 晶面诱导还原导向的AgBr/Ag0/TiO2{100} Z型异质结用于四环素去除[J]. 催化学报, 2025, 75(8): 164-179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||