催化学报 ›› 2026, Vol. 80: 135-145.DOI: 10.1016/S1872-2067(25)64870-4

• 论文 • 上一篇    下一篇

B-TiO2@COF S型双功能光催化剂上过氧化氢生产与糠酸合成的协同耦合效应

徐燕东, 景子慧, 苏雯皓, 徐加乐, 王明亮()   

  1. 东南大学化学化工学院, 江苏南京 211189
  • 收稿日期:2025-06-17 接受日期:2025-08-08 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 王明亮
  • 基金资助:
    江苏高校优势学科建设工程项目(1107047002)

Synergistic coupling of H2O2 production and furoic acid synthesis over B-TiO2@COF S-scheme bifunctional photocatalyst

Yandong Xu, Zihui Jing, Wenhao Su, Jiale Xu, Mingliang Wang()   

  1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China
  • Received:2025-06-17 Accepted:2025-08-08 Online:2026-01-18 Published:2026-01-05
  • Contact: Mingliang Wang
  • Supported by:
    Priority Academic Program Development of Jiangsu Higher Education Institutions(1107047002)

摘要:

过氧化氢(H2O2)作为一种绿色氧化剂, 因其高能量密度和易存储特性, 在环境修复、化学合成和生物医学等领域具有重要应用. 然而, 传统的蒽醌法生产H2O2存在能耗高、步骤繁琐及产生有毒副产物等问题, 限制了其进一步发展. 光催化技术利用太阳能驱动水和氧气转化, 具有安全可持续的优势. 当前, 光催化产H2O2主要依赖光生电子通过两电子氧还原反应实现, 但缓慢的水氧化动力学常需牺牲剂(如醇类)消耗空穴以促进电荷分离, 这不仅浪费有机试剂, 也忽视了空穴在有机合成中的高氧化潜力. 因此, 将H2O2合成与有机氧化反应(如将生物质衍生的糠醇(FAL)选择性氧化为高附加值化学品糠酸(FAC))相耦合, 成为一种理想策略. 该策略不仅能协同提升氧化还原效率, 充分利用光生电子-空穴对, 还可规避缓慢的水氧化反应.

本研究旨在开发一种高活性双功能光催化剂, 实现H2O2生产与FAC合成的协同耦合. 本文结合硼掺杂与构建S型异质结两种优化策略, 通过在多孔B-TiO2表面原位生长不规则的TpPa-Cl共价有机框架(COF)块体, 成功制备了B-TiO2@COF复合光催化剂. 硼的掺杂拓宽了TiO2的光吸收范围, 并抑制其载流子复合. 此外, 具有高孔隙度和高还原电位的COF与B-TiO2深度复合, 不仅增大了比表面积、改善了反应物接触并提供了更多活性位点, 更关键的是与B-TiO2形成了S型异质结. 该结构能够有效复合氧化还原能力较弱的载流子, 同时保留具有强氧化还原能力的光生电子和空穴, 从而显著延长其寿命, 并提升其空间分离与传输效率. 在不使用助催化剂的条件下, B-TiO2@COF展现出优异的双功能光催化活性. H2O2产率高达2082.6 μmol g-1 h-1, 同时高选择性地氧化FAL生成FAC, FAL转化率高达94%. 通过原位X射线光电子能谱和密度泛函理论计算, 证实了B-TiO2与COF之间遵循S型电荷转移机制, 该机制是B-TiO2@COF实现高效电荷分离并保留强氧化还原能力载流子的关键. 淬灭实验、电子顺磁共振光谱和原位漫反射傅里叶变换红外光谱深入揭示了B-TiO2@COF的光催化反应机理: (1) H2O2主要以超氧自由基(·O2-)和过氧化羟基自由基(OOH*)为关键中间体, 通过2e-氧还原路径(2e- ORR)生成; (2) FAL首先被空穴(h+)氧化为·C5H5O2自由基, 随后可被h+进一步氧化为糠醛, 或与·OH反应生成目标产物FAC. 硼掺杂与S型异质结的协同效应显著抑制了载流子复合, 优化了能带结构和反应路径, 使得B-TiO2@COF成功实现了H2O2生产与FAC合成的协同耦合.

综上, 本工作提出了一种设计高效复合光催化剂的新策略, 实现了光生电子和空穴的有效利用. 未来研究可进一步探索该协同耦合策略在不同有机底物氧化反应中的普适性, 并优化催化剂结构以提升其稳定性和太阳光利用率, 推动光催化技术在绿色化工和可持续能源转化中的实际应用.

关键词: 光催化产H2O2, 多孔结构, S型异质结, 稳定性, 氧化还原性质

Abstract:

Abstracr: The synergistic coupling of photocatalytic hydrogen peroxide (H2O2) production and green organic synthesis not only optimizes utilization of photogenerated electron-hole pairs but also circumvents kinetically sluggish water oxidation reaction. In this study, an efficient composite photocatalyst was developed through in-situ growth of irregular TpPa-Cl blocks on the surface of boron-doped TiO2, which boasts a large specific surface area. Boron doping enhances light absorption range and inhibits recombination of charge carriers. Additionally, deep integration of porous TiO2 with TpPa-Cl improves the contact between the reactants and the photocatalyst, extends the carrier lifetime, and provides more active sites. In the absence of a co-catalyst, the yield of H2O2 reached 2082.6 μmol g-1 h-1, with a furfuryl alcohol conversion rate of 94%. In-situ XPS and density functional theory calculations confirmed S-scheme charge transfer mechanism, which enhances carrier separation and transfer efficiency while retaining photogenerated electrons and holes with strong redox properties. Quenching experiments, electron paramagnetic resonance, and in-situ diffuse reflectance infrared Fourier transformed spectroscopy demonstrated that H2O2 was primarily generated via a 2-electron oxygen reduction reaction with ·O2- and OOH* as intermediates. Furthermore, furfuryl alcohol was oxidized to the radical ·C5H5O2 by h+ and subsequently converted to furfural or furoic acid through reactions with h+ or ·OH. This work presents a novel strategy for designing efficient composite photocatalysts for H2O2 production and green organic synthesis.

Key words: Photocatalytic H2O2 production, Porous structure, S-scheme heterojunction, Stability, Redox properties