催化学报 ›› 2026, Vol. 81: 259-271.DOI: 10.1016/S1872-2067(25)64851-0

• 论文 • 上一篇    下一篇

自组装3D/2D ZnIn2S4/CN-NH4构建S型异质结用于纯水中高效制备过氧化氢

王聪聪a,b,c, 权永康d, 石穗丽a,b,c, 王国荣a,b,c(), 靳治良a,b,c   

  1. a 北方民族大学化学与化学工程学院, 宁夏银川 750021
    b 北方民族大学宁夏太阳能化学转化技术重点实验室, 宁夏银川 750021
    c 北方民族大学, 国家民族事务委员会化学工程与技术重点实验室, 宁夏银川 750021
    d 福州大学化学工程学院, 福建福州 350116
  • 收稿日期:2025-06-19 接受日期:2025-08-13 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: guorongwang@nun.edu.cn (王国荣).
  • 基金资助:
    国家自然科学基金(U22A20147)

Self-assembling 3D/2D ZnIn2S4/CN-NH4 to construct S-scheme heterojunctions for the efficient production of H2O2 in pure water

Congcong Wanga,b,c, Yongkang Quand, Suili Shia,b,c, Guorong Wanga,b,c(), Zhiliang Jina,b,c   

  1. a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
    b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, Ningxia, China
    c Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China
    d College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2025-06-19 Accepted:2025-08-13 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: guorongwang@nun.edu.cn (G. Wang).
  • Supported by:
    National Natural Science Foundation of China(U22A20147)

摘要:

过氧化氢(H2O2)作为一种环境友好型氧化剂和重要的能量载体, 已广泛应用于造纸、污水处理、医疗消毒和工业生产等领域. 鉴于大规模生产H2O2的传统工业蒽醌工艺, 涉及高成本、高能耗以及高污染, 与追求的碳中和理念背道而驰. 开发一种低能耗、可持续的H2O2生产工艺势在必行. 相较于大多数传统工艺, 人工光合作用对H2O2的生产提供了极具吸引力的新途径. 通过太阳能将丰富的水资源以及空气中体积分数约为20%的氧气进行整合, 产生高能量密度的H2O2, 从而实现绿色生产. 该过程主要涉及两种途径: 双电子氧还原反应 (ORR, O2 + 2H+ + 2e → H2O2, 0.69 V vs. NHE)和水氧化反应(WOR, 2H2O → H2O2 + 2H+ + 2e, 1.76 V vs. NHE). 由于热力学限制, 双电子WOR反应对H2O2的产出较为困难, 且产物易分解. 目前, 大部分研究工作主要集中双电子氧还原路径.

本文通过软模板法, 将大块的C3N4分解成更小的片段(CN-NH4), 引入更多无序界面, 提供更多的界面电场, 大大弥补了材料自身的不足. 进而将低成本的CN-NH4片段负载到花状ZnIn2S4上, 构建紧凑的S型异质结, 以实现环保型H2O2光催化合成. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)证实催化剂单体以及ZnIn2S4/CN-NH4复合催化剂的成功制备. 通过原位X射线光电子能谱(XPS)和密度泛函理论计算证实了ZnIn2S4/CN-NH4复合催化剂间的典型S型电子转移机制, 电化学测试证实, ZnIn2S4/CN-NH4复合催化剂的构建为反应提供更多的电化学活性位点, 电子顺磁共振谱表明ZnIn2S4/CN-NH4复合催化剂的制备表现出更强的氧化还原能力并通过两步单电子氧化原反应生成H2O2. 同时, CN-NH4的引入增强了ZnIn2S4对氧气的吸附, 并降低了其两步单电子氧还原反应(ORR)的能量势垒. ZnIn2S4/CN-NH4光催化剂的H2O2产量为2031 µmol∙g‒1∙h‒1, 分别是ZnIn2S4和CN-NH4的2.84倍和21.39倍, 这归因于ZnIn2S4和CN-NH4之间的接触, 为电子提供了快速迁移通道, 在界面处形成了强大的内电场, 并有效地延长了光生载流子的迁移寿命.

综上, 合理构建S型异质结是提高材料光催化性能的有效策略. 本文构建了S型3D/2D ZnIn2S4/CN-NH4异质结,并深度探究了S型异质结构建在光催化产H2O2领域的关键作用, 为在纯水体系中实现高效高浓度H2O2的光催化生成提供新思路.

关键词: 过氧化氢, 氧还原, 超纯水, S型异质结, 硫化锌铟

Abstract:

The photocatalytic double-electron oxygen reduction pathway has become a strategic approach for the production of hydrogen peroxide (H2O2). In many heterojunction systems, indium zinc sulfide (ZnIn2S4) has received increasing attention, but it is limited by its slow REDOX kinetics and the lack of sufficient double-electron oxygen reduction active sites. In this study, low-cost CN-NH4 fragments were loaded onto flower-like indium zinc sulfide (ZnIn2S4) to construct a compact S-scheme, in order to achieve environmentally friendly hydrogen peroxide photosynthesis. The H2O2 yield of the ZnIn2S4/CN-NH4 photocatalyst was 2031 µmol g-1 h-1, which was 2.84 and 21.39 times that of ZnIn2S4 and CN-NH4, respectively. This is attributed to the contact between ZnIn2S4 and CN-NH4, providing a fast migration channel for electrons, forming a strong internal electric field at the interface, and effectively prolonging the migration lifetime of photogenerated carriers. The introduction of CN-NH4 enhances the absorption of oxygen by ZnIn2S4 and simultaneously reduces the energy barrier of its two-electron oxygen reduction reaction. This study provides a new approach for constructing S-scheme heterojunction materials that can efficiently generate H2O2 under solar irradiation.

Key words: Hydrogen peroxide, Oxygen reduction, Pure water, S-scheme heterojunction, Zinc indium sulfide