催化学报 ›› 2026, Vol. 80: 20-37.DOI: 10.1016/S1872-2067(25)64869-8

• 综述 • 上一篇    下一篇

实现塑料光重整与产氢耦合实际应用的关键要素

张金鹏a,1, 梁腾b,1, 陈恬a, 郭美君a, 余乐a, 佘萍b,*(), 冉景润a,*()   

  1. a阿德莱德大学化学工程学院, 南澳阿德莱德, 澳大利亚
    b吉林大学化学学院, 无机合成与制备化学全国重点实验室, 吉林长春 130012, 中国
  • 收稿日期:2025-07-30 接受日期:2025-09-10 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 佘萍,冉景润
  • 作者简介:第一联系人:1共同第一作者
  • 基金资助:
    澳大利亚研究委员会(ARC)发现项目计划(FT230100192);国家自然科学基金(22301099);吉林省教育厅(JJKH20241250KJ);中国CSC奖学金项目

Key components for realistic application of plastic photoreforming coupled with H2 evolution

Jinpeng Zhanga,1, Teng Liangb,1, Jaenudin Ridwana, Tian Chena, Elhussein M. Hashema, Meijun Guoa, Amin Talebian-Kiakalaieha, Le Yua, Ping Sheb,*(), Jingrun Rana,*()   

  1. aSchool of Chemical Engineering, The University of Adelaide, Adelaide 5005, South Australia, Australia
    bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, Jilin, China
  • Received:2025-07-30 Accepted:2025-09-10 Online:2026-01-18 Published:2026-01-05
  • Contact: Ping She, Jingrun Ran
  • About author:Ping She (College of Chemistry, Jilin University) received her bachelor’s degree from Jilin University in 2014. In 2018, she obtained her Ph.D. degree in engineering from Jilin University. She then completed post-doctoral work at Jilin University (Post Doctoral Innovative Talent Support Program of China from 2018 to 2021). Her research focuses on inorganic porous nanomaterial-based catalysis evolution.
    Jingrun Ran (School of Chemical Engineering, The University of Adelaide) received his PhD degree in Chemical Engineering from the University of Adelaide. Currently, he is appointed as a Senior Lecturer in the School of Chemical Engineering at the University of Adelaide. In 2020-2024, he has been recognized as a Clarivate Highly Cited Researcher. In 2023, he was awarded the ARC Future Fellowship. He is leading a research group focused on the atomic-level design and fabrication of advanced photocatalysts towards various pivotal reactions (e.g., reforming plastics, reforming biomass, light alkane activation and CO2 conversion) using renewable solar energy.
    First author contact:1These authors contributed equally.
  • Supported by:
    Australian Research Council (ARC) through the Discovery Project program(FT230100192);National Natural Science Foundation of China(22301099);Department of Education of Jilin Province(JJKH20241250KJ);Chinese CSC Scholarship Program

摘要:

当前, 全球能源结构仍主要依赖传统的不可再生化石燃料, 其过度使用引发了严重的能源危机, 并显著阻碍了全球可持续发展进程. 此外, 能源领域的温室气体排放约占全球排放总量的四分之三, 是全球应对气候变化的主要挑战之一. 在此背景下, 氢能因其清洁性、高能量密度和良好储存性, 被视为未来理想的能源载体. 光催化整体水分解因能直接利用可再生太阳能并实现零碳排放, 被认为是绿色制氢的理想途径. 塑料光重整与产氢耦合, 不仅能显著提高产氢速率, 还能将废塑料转化为有价值的小分子化学品, 同时解决能源与环境困境. 然而, 该领域仍处于探索阶段, 缺乏系统性总结与实际应用导向的研究框架. 因此, 需要密切关注该技术的关键环节, 以推动此技术走向实际应用.

本文首先简要介绍了塑料光重整与产氢耦合的基本原理; 然后, 总结了目前常用的塑料预处理策略: 物理、化学和生物预处理. 随后, 结合一些典型案例, 系统阐述当前在光催化剂设计中所采用的多种策略, 包括增强底物吸附、优化光吸收性能、促进电荷分离与传输、提升结构与反应稳定性、降低制备与生产成本以及利用人工智能与机器学习指导催化剂探索. 详细分析了太阳跟踪聚光装置、光催化反应器以及光催化模块的运行参数对实现实际应用的关键作用; 此外, 介绍了技术经济分析和生命周期在评估塑料光重整与产氢耦合实际应用的可行性与可持续性方面的关键作用; 最后, 重点讨论了该领域当前存在的挑战与发展机遇: (1) 需要更加经济、环保、高效的预处理策略; (2) 具有更高活性、稳定性和氧化选择性的光催化剂对于其实际应用至关重要; (3) 目前研究大多集中在光催化剂的评估, 而忽视了对反应器的研究, 未来需要探索新型反应器, 以满足实际应用的需要; (4) 混合组分塑料的研究应该被关注; (5) 光催化领域尚缺乏统一的光源标准, 而建立统一的辐照条件有望加速该领域的发展与成果的可比性; (6) 模块的组合需要跨学科的合作.

总体而言, 本文构建了塑料光重整的系统性框架, 为该技术从实验探索向实际应用转化提供了依据与指引, 同时也为实现绿色氢能开发与塑料资源化利用的双重目标提供一定的参考和借鉴.

关键词: 光催化, 塑料光重整, 析氢, 高值化学品, 多功能催化剂

Abstract:

Green hydrogen (H2) energy plays an important role in combating climate change, promoting energy transition, and fostering sustainable development. Solar-driven plastic photoreforming afford an attractive solution, it overcomes the limitation of the slow oxygen evolution half-reaction in overall water splitting while tackling environmental pollution and resource waste caused by plastics. However, this technology still rests on the experimental stage, and the transition from laboratory to realistic application remains lacking systematic view. In this review, key components for plastic photoreforming, including plastic pretreatment routes, photocatalysts exploration, basic photocatalytic modules for the realistic application, and feasibility, are investigated. Finally, outlook in this area is discussed.

Key words: Photocatalysis, Plastic photoreforming, H2 evolution, Value-added chemicals, Multifunctional catalysts